一、「负载均衡」是什么
正如题图所示的这样,由一个独立的统一入口来收敛流量,再做二次分发的过程就是「负载均衡」,它的本质和「分布式系统」一样,是「分治」。
如果大家习惯了开车的时候用一些导航软件,我们会发现,导航软件的推荐路线方案会有一个数量的上限,比如3条、5条。因此,其实本质上它也起到了一个类似「负载均衡」的作用,因为如果只能取Top3的通畅路线,自然拥堵严重的路线就无法推荐给你了,使得车流的压力被分摊到了相对空闲的路线上。
在软件系统中也是一样的道理,为了避免流量分摊不均,造成局部节点负载过大(如CPU吃紧等),所以引入一个独立的统一入口来做类似上面的“导航”的工作。但是,软件系统中的「负载均衡」与导航的不同在于,导航是一个柔性策略,最终还是需要使用者做选择,而前者则不同。
怎么均衡的背后是策略在起作用,而策略的背后是由某些算法或者说逻辑来组成的。比如,导航中的算法属于「路径规划」范畴,在这个范畴内又细分为「静态路径规划」和「动态路径规划」,并且,在不同的分支下还有各种具体计算的算法实现,如Dijikstra、A*等。同样的,在软件系统中的负载均衡,也有很多算法或者说逻辑在支撑着这些策略,巧的是也有静态和动态之分。
二、常用「负载均衡」策略图解
下面来罗列一下日常工作中最常见的5种策略。
1、轮询
image
这是最常用也最简单策略,平均分配,人人都有、一人一次。大致的代码如下。
image
2、加权轮询
在轮询的基础上,增加了一个权重的概念。权重是一个泛化后的概念,可以用任意方式来体现,本质上是一个能者多劳思想。比如,可以根据宿主的性能差异配置不同的权重。大致的代码如下:
这段代码的过程如下图的表格。"()"中的数字就是自增数,代码中的cur_weight。
image
值得注意的是,加权轮询本身还有不同的实现方式,虽说最终的比例都是2:1:2。但是在请求送达的先后顺序上可以所有不同。比如「5-4,3,2-1」和上面的案例相比,最终比例是一样的,但是效果不同。「5-4,3,2-1」更容易产生并发问题,导致服务端拥塞,且这个问题随着权重数字越大越严重。例子:10:5:3的结果是「18-17-16-15-14-13-12-11-10-9,8-7-6-5-4,3-2-1」
在此我向大家推荐一个Java学习交流群。交流学习群号:874811168 里面会分享一些资深架构师录制的视频录像:有Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构等这些成为架构师必备的知识体系。还能领取免费的学习资源,一起学习,一起进步,目前受益良多。 |