- UID
- 1023166
- 性别
- 男
- 来自
- 燕山大学
|
TOP8 智能照明系统LED驱动电路设计
近年来,半导体光源正以新型固体光源的角色逐步进入照明领域。按固体发光物理学原理,LED发光效率能接近100 % ,具有工作电压低、耗电量小、响应时间短、发光效率高、抗冲击、使用寿命长、光色纯、性能稳定可靠及成本低等优点。随着LED 价格的不断降低,发光亮度的不断提高,半导体光源在照明领域中展现了广泛的应用前景。LED的伏安特性与普通二极管的伏安特性相同,正向电压的较小波动就会导致正向电流的急剧变化。LED正向电流的大小会随环境温度变化而改变,环境达到一定温度,LED 容许正向电流会急剧降低; 在此情况下, 如果仍旧通过大电流, 容易造成LED 老化,缩短使用寿命,因此LED 在应用过程中需要一个有恒温、恒流控制的,具有可靠保护功能的LED驱动系统。本文介绍了一种智能LED 驱动系统的设计方法。
恒流驱动电路
恒流源在一定的电压和温度变化下,产生电流变化接近于零,具有恒定电流值和很高的动态输出电阻。一般,恒流驱动电路用电子管、晶体管、恒流器件、集成电路、集成稳压器和其他元器件组成。为了适合LED 灯具的应用,恒流源不仅要有较高稳定度和电流输出准确度,而且恒流驱动电路输出电流设计为可调输出。为了保证输出电流的精度,本设计采用单片机系统D /A 转换输出电压,调节恒流源输出电流,原理图如图所示。
此恒流驱动电路属于电流串联负反馈的拓扑结构,其中LED 为负载,R6 为采样电阻。在本设计中,为了实现可调恒流源控制,在运算放大器的同相输入端引入由单片机系统D /A 输出的可调电压信号Vs,使其成为受控恒流源,也就是基准电压。在反向输入端连接采样电阻R6。运算放大器工作在深度负反馈状态,它配合功率MOS 管通过反馈跟随输入基准电压Vs,功率MOS 管与运算放大器的基极相连,用来增加驱动电流。当运算放大器的同相端输入电压恒定时,由于负反馈的存在,保证了输出电压的恒定,从而使流经LED 负载的电流为恒定电流。恒流源的输出电流直接取决于D /A 的输出电压和采样电阻R6 的比值。由于反馈环节中使用了运算放大器,反馈环路的环路增益加大,反馈深度加大,恒流驱动电路的输出阻抗很大,满足使用要求。
单片机硬件系统
单片机系统主要有AT89C51、ADC0809、DAC0800、数码管、按钮等部分组成,单片机系统原理图如图5 所示。
采样模拟电压输入到ADC0809 的输入端,经过ADC0809 转换,输出8 位二进制数到单片机端口,单片机将得到的8 位二进制数,转换成3 位十进制数,显示在数码管上,同时将当前值与基准值相比较,由软件系统做出相应的调整控制。单片机系统软件运算输出一个8 位二进制数值,经由DAC0800实现D /A 转换,输出到DA1 端口,DA1 端口电压输入到恒流驱动电路,调整基准电压VS,实现恒流驱动电路输出电流设计为可调输出。
教室智能照明控制系统电路设计
采用PLCBUS-9402393 芯片设计的接收模块电路如图6 所示。一个接收模块可以控制两个照明回路,分别由芯片的12 脚和13 脚控制,每个回路可以设置一个主地址和15 个副地址。接收模块的19 和22 管脚连接电力线,从电力线上接收指令,芯片判断其指令中的目的地址是否与模块某接收到指令后判断其指令中的目的地址是否与模块某回路的地址相同, 如相同按照指令代码对芯片12 脚或13 脚输出高电平,Q1 和Q2 三极管 9014 起放大电流的作用,电流增大至 信号继电器 OJT-SS-112LM 动作电流后,使继电器 线圈 导通,则K1 或K2 闭合,照明回路LOAD1 或LOAD2 导通,灯光打开。如按照指令芯片12 和13 管脚无高电平输出或输出值小于信号继电器动作电流时, 则相应照明回路关断,灯光关闭。接收模块执行完控制指令后将发送反馈信息给控制模块。墙壁开关可安装在接收模块后,只有在模块供电后, 才能使用墙壁开关打开灯光,这样可以有效节约电能。
图6 接收模块照明灯光 控制电路 |
|