首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
DSP技术
» 基于DSP的通道控制双余度设计与实现
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于DSP的通道控制双余度设计与实现
发短消息
加为好友
苹果也疯狂
当前离线
UID
852722
帖子
10369
精华
0
积分
5185
阅读权限
90
在线时间
277 小时
注册时间
2011-8-30
最后登录
2016-7-18
论坛元老
UID
852722
1
#
打印
字体大小:
t
T
苹果也疯狂
发表于 2015-8-30 22:11
|
只看该作者
基于DSP的通道控制双余度设计与实现
控制系统
,
电子设备
,
传感器
,
控制板
,
通道
引言
具有自动控制功能的电子设备已广泛应用于我国多型机上,用于飞机上各机载设备的控制、调节等功能。如图1所示,其控制系统主要由传感器信号输入、核心控制板及经过处理驱动后的控制信号输出,最后输出到机上的具体应用。本文将主要介绍如何利用通道复用技术设计实现具有双余度DSP的控制板部件,重点描述如何实现系统的双余度DSP设计、双DSP间如何通讯以及DSP的故障判定法则等。
控制板硬件设计
控制板的硬件框图如图2所示,主要由外部信息采集单元、双余度DSP模块、应用处理及其输出单元等组成。其中,双余度单元的CPU选用16位定点DSP TMS320LF2407A,其运行最高速率可达40MHz、片内集成多种外设。
图中,两个DSP通过CAN 总线及I/O口进行控制信息交换及数据通信。两个DSP分别与收发器1、收发器2相连,这两个通道与外部数据或控制总线是相连的,即共享一个外部接口,通道控制逻辑使同一时刻只能有一个通道打开,保证系统工作的稳定性。其中DSP1是控制逻辑的主控制机,在正常工作的情况下由它控制着相应通道的通断及当前主控CPU。每个DSP都有自己的 EEPROM存储器,用于存储系统的各种即时信息,并通过CAN 总线在双机间进行传输。控制板工作时采集传感器及外部控制信息,通过CPU运算处理后由其对应的通道输出控制信息到相应控制盒,控制相应设备的动作。
双余度DSP模块硬件设计
双余度DSP模块是本设计的重点,其硬件原理如图2的双余度DSP模块。它由双DSP核及通道控制逻辑两部分组成。其中DSP1为主CPU,DSP2为辅CPU。当系统上电启动后主CPU通过I/O口通知辅CPU进行自检并采集其自检信息,同时当主CPU的EEPROM内容发生改变时,主CPU通过CAN 总线发送相应的数据给辅CPU以更新辅CPU的EEPROM内容,如图3所示。图中CAN收发器为两个对连的CAN 总线收发器,负责实现双机间系统即时信息的传送,并存储于各自对应的EEPROM中,供维护和查询。
通道控制逻辑决定着整个系统的当前工作CPU,即当其中一个CPU被认为有故障时,通道控制逻辑将主动或是被动地切换到系统认为没有故障的CPU,或决定由其中的一个CPU强制工作。通道控制逻辑的硬件原理如图4所示。所谓的主动切换是指当主DSP通个自检发现自身有故障(包括其对应的通道故障),而其程序能正常工作的情况下,由其程序产生的通过控制I/O口的逻辑电平而产生的通道切换。被动切换是指非DSP自检的因素产生,而是由于通道控制逻辑本身硬件故障引起的通道意外切换。通道控制逻辑硬件由门电路组成,能有效地防止双机的抢权问题。同时控制逻辑返回给两个DSP一个 “CTL_BACK”状态回读信号,用于判断当前的通道情况。
主DSP通过控制输入端口的逻辑状态来使能相应的通道,只有当两个控制端同时有效时选通主通道,此时主DSP工作。其他任何状态都将打开辅通道。可以有效避免由于主控DSP I/O口失效而产生不能切换的后果。同时主DSP不断检测 “CTL_BACK”状态回读信号的状态,否则将产生被动切换,说明通道控制逻辑硬件故障。辅DSP上电后不断检测 “CTL_BACK”状态回读信号,若检测到为有效,则说明通道已经切换到了辅通道,辅DSP开始工作。
应用处理及其输出单元
针对于不同的应用其处理及输出单元具有各自的特殊性,本应用要求输出多路电压控制信号,主要由带SPI接口的16路模数转换芯片及驱动电路组成,并通过DSP的I/O口控制D /A的复位、清零等操作。
系统软件
系统软件设计主要基于CCS2.2 Code Composer Studio集成开发环境,主程序采用汇编语言编写,软件调试及仿真完成。控制板DSP软件流程框图如图 5所示,系统软件主要实现双机间的通讯及故障判别并切换,并完成控制任务处理。包括主DSP软件及辅DSP软件两部分,其中任务控制处理功能部分是相同的,重点在于双机间的交互问题。
在双机交互的切换问题中,起主要作用的是通道的切换,当前打开的通道具有最高优先权,不管产生DSP切换的原因是什么,其最终的结果都将是当前只有一个通道是打开的,通道的切换可能是由主DSP程序主动控制而切换,或是控制逻辑本身的硬件原因,但是只有这个对应的打开通道的DSP能真正控制外部的输出,这即所谓的通道分用。切换依据如图5所示。
系统应用控制软件主要实现系统的具体的应用功能,主要由以下功能子程序组成:系统自检子程序、双机交互及故障判断切换子程序、控制应用功能子程序等。其中主DSP、辅DSP双机交互软件流程如图6a、图6b所示。
结语
双余度DSP系统在对控制器要求较高的场合具有很好的实用意义,其基于通道复用的硬件设计结构简单且易于实现,有效地解决了双机共同工作的权限问题。本设计中所提出的双余度DSP设计可以很方便地移植到其他的双余度系统中。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议