首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
DSP技术
» 基于电荷泵改进型CMOS模拟开关电路
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于电荷泵改进型CMOS模拟开关电路
发短消息
加为好友
520503
当前离线
UID
872339
帖子
13270
精华
0
积分
6635
阅读权限
90
在线时间
361 小时
注册时间
2012-3-2
最后登录
2016-3-10
论坛元老
UID
872339
1
#
打印
字体大小:
t
T
520503
发表于 2015-5-27 23:08
|
只看该作者
基于电荷泵改进型CMOS模拟开关电路
开关
,
而且
,
影响
关键字:电荷泵改进 电平抬升 模拟开关设计
当前VLSI 技术不断向深亚微米及纳米级发展,
模拟开关
是模拟电路中的一个十分重要的原件,由于其较低的导通电阻,极佳的开关特性以及微小封装的特性,受到人们的广泛关注。模拟开关导通电阻的大小直接影响开关的性能,低导通电阻不仅可以降低信号损耗而且可以提高开关速度。要减小开关导通电阻,可以通过采用大宽长比的器件和提高栅源电压的方法,可是调节器件的物理尺寸不可避免地会带来一些不必要的寄生效应,比如增大器件的宽度会增加器件面积进而增加栅电容,脉冲控制信号会通过电容耦合到模拟开关的输入和输出,在每个开关周期其充放电过程中会消耗更多的电流,时间常数t=RC, 充放电时间取决于负载电阻和电容,使得开关的速度变慢,同时增大宽长比也增加了器件的成本。当前减小导通电阻的普遍办法是提高开关管的栅电压。
1 传统模拟开关原理及栅增压原理
图1 传统模拟开关
在MOS 技术中,传统的开关实现就是一个PMOS 管和一个NMOS 管并联,如图1 所示,A 和B 两端分别为传送信号的输入、输出端,两个管子的栅极分别由极性相反的信号来控制。由于
MOS管
的源极和漏极可以互换,因此这个电路的输入、输出端也可以互换,它可以控制信息双向流通,就像一个双向开关。工作过程:当控制信号S=1 时,PMOS 管和NMOS管均导通,传输门接通,信号畅行无阻;当控制信号S=0 时,PMOS 管和NMOS 管均截止,传输门关闭,开关断开。当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管是并联运行,可近似地认为开关的导通电阻近似为一常数。这是
CMOS
传输门的优点。
1.1 模拟开关分析
CMOS 开关的导通电阻为:
展开为:
其中un 和up 表示NMOS 管和PMOS 管迁移率;Cox 表示器件的栅氧化层电容;Vg 表示NMOS 管栅电压,Vthn|Vthp|分别表
示NMOS 管和PMOS 管的阈值电压,如果设计时取
时,式(2)可化简为:
导通电阻将不随输入信号改变而改变,可等效为一个恒定阻值的电阻,如式(3),不会引起模拟信号的失真,由于导通电阻是由两个电阻并联,所以阻值较单管开关小得多,使得开关速率又得到提高。从式(3)中可以知道MOS 开关为了能提高速度和精度,需要抬高NMOS 管的栅电压。增加栅电压最直接的办法就是提高电路的电源低压,但是从低电压系统角度来说这增加了成本,因此需要加一个电源电路,最好的办法是芯片内部产生一个电压来增加栅电压。
1.2 栅增压原理
栅增压原理是依靠
电荷泵
的工作原理:先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。本文中所用的电容式电荷泵采用电容器来贮存能量,通过电容对电荷的积累,电容A 端接时钟信号Clk,当A 点电位为0 时,B 点电位为Vdd;当A点电位为Vdd 时,由于电容两端的电压不会突变,理想情况下,此时B 点电位被抬升为2Vdd,因为电荷泵的有效开环输出电阻存在,使得实际情况B 点电位低于2Vdd。
图2 栅增压基本电路
下一页:
改进型模拟开关电路设计
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议