4 系统推荐流程图至此,我们可以通过 Twitter,LinkedIn 进行公司信息提取,信息处理,以及使用 LSI,奇异值分解(SVD)等方法计算公司间的相似度,并完成潜在客户的挖掘与推荐。具体的推荐流程如图 3 所示。
图 3. 系统推荐流程图 5 为用户推荐 IBM 产品由推文的提取过程可知,IBM Client Voice 发表的推文中包含 IBM 产品及其使用客户,并可在数据库中获取指定用户使用的 IBM 产品。为了给指定用户推荐 IBM 的其他产品,首先需要获取该用户所属行业内的其他用户,然后通过上述步骤计算该用户与同行业内的其他用户的相似度,并将相似度达到某个阈值的用户所使用的 IBM 产品推荐给该公司。具体的实现界面如图 4 所示:
图 4. IBM 产品推荐结果 6 为 IBM 产品挖掘潜在客户由于一个 IBM 产品可能有多个用户使用,为了给某个 IBM 产品挖掘潜在客户,必须获取当前使用了该产品的用户集,对于与该用户集中的用户相似度达到某个阈值的用户即可作为该产品的潜在客户。所以,对该用户集中的每个用户,计算与其同行业内用户的相似度,从而获得一个潜在客户集。具体的实现界面如图 5 所示:
图 5. 潜在客户推荐结果 7 总结推荐已经广泛使用于电子商务、电影和视频网站、个性化音乐网络电台、社交网络、网络公开课等领域,但基于社交网络为公司推荐潜在客户的实践却很少见。挖掘潜在客户是所有公司的强烈需求之一,因此,本文所述的推荐系统具有很强的实践意义。为进一步提高潜在客户推荐的准确性,接下来会关注于从更多的社交网络中挖掘更多的数据源来丰富以往的成功案例,并挖掘关于各个公司更多的信息来提高相似度计算的准确性。 |