首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 采用边界扫描法测试系统级芯片互连的信号完整性
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
采用边界扫描法测试系统级芯片互连的信号完整性
发短消息
加为好友
yuyang911220
当前离线
UID
1029342
帖子
9914
精华
0
积分
4959
阅读权限
90
在线时间
286 小时
注册时间
2014-5-22
最后登录
2017-7-24
论坛元老
UID
1029342
性别
男
1
#
打印
字体大小:
t
T
yuyang911220
发表于 2016-12-24 14:38
|
只看该作者
采用边界扫描法测试系统级芯片互连的信号完整性
如何
,
拓展
本帖最后由 yuyang911220 于 2016-12-29 17:27 编辑
互连中的信号完整性损耗对于数千兆赫兹高度复杂的SoC来说是非常关键的问题,因此经常在设计和测试中采用一些特殊的方法来解决这样的问题。本文介绍如何利用片上机制拓展JTAG标准使其包含互连的信号完整性测试,从而利用JTAG边界扫描架构测试高速系统级芯片(SoC)的互连上发生的时延破坏。
互连中的信号完整性损耗对于数千兆赫兹高度复杂的SoC来说是非常关键的问题,因此经常在设计和测试中采用一些特殊的方法来 解决这样的问题。我们认为,完整性损耗(本文有时也称为完整性故障)是在电压失真(噪声)和时延破坏(偏移)超过能接受的门限时发生的。这样的门限取决于 制造所采用的工艺技术。这种故障情况的发生有着许多不可预料的原因,包括:1. 产生寄生值,例如晶体管尺寸、跨导、门限电压、寄生电阻/电感/电容值等等的工艺变化,以及传输线效应,例如串扰、过冲、反射,电磁干扰等,这些问题都很 难分析而且制造过程中会有变化的互连间耦合效应(如耦合电容和互感)。2. SoC中开关同时切换引起的地线反弹,通常会造成噪声余量的变化。
完整性故障模型
最被广泛使用的模型是最大入侵方(MA)故障模型,这是许多研究人员用来对长距离互连进行串扰分析和测试的一个简化模型。如 图1所示,该模型假设在V(受害方)线上传输的信号会受到在另外一条相邻的A(入侵方)线上的信号/变化的影响。这种耦合影响可以用一般的耦合元件Z来概 括。一般来说这种影响的后果是噪声(引起振铃和功能错误)和时延(引起性能降级)。
本文使用了相同的模型。然而我们需要强调的是,对何种模式会造成最大的完整性损耗仍有争论。显然传统的MA模型只考虑了电容 耦(couplingC),所有的入侵方方同时作相同的跳变,而受害方或保持不变(针对最大的振铃),或作出相反的跳变(针对最大的时延)。当互感起作 用时,一些研究人员利用其它方式(伪随机或恒定)产生测试模式来形成最大的完整性损耗。虽然我们仍使用MA模型,但测试方法并不取决于测试模式。在本文中 假设测试模式已被确定,读者可以看到它们是如何通过增强的JTAG架构高效地馈入互连的。
完整性损耗传感器(ILS)单元
由于千兆赫兹芯片中的完整性损耗已受到越来越多人的重视,一些研究人员开发出了系列片上传感器。许多这样的完整性损 耗传感器(ILS)的基础都是放大器电路,它能够检查出电压破坏和时延门限。采用D触发器的BIST(内置自检)结构被推荐用于运放传播时延偏差的检测。 在测试模式期间,待测试的运放或被放置于电压跟随器配置中以检测斜率偏差,或被置于比较器配置中以检测信号传播时延偏差。
采用IDDT和边界扫描方法是解决总线互连缺陷的一种测试技术示。在本例中一个内置传感器被集成进了系统中。该传感器是一个 片上电流镜像,可以将散乱的电荷转换成相关的测试时间。噪声检测器(ND)和偏移检测器(SD)单元都是基于改进的串耦PMOS差分传感放大器,因此价格 十分便宜。这些单元紧邻互连的端末,对实际信号和噪声进行取样。每当噪声或偏移高于可接受的限值时,这些单元就产生1到0的跳变,并存储于触发器中,以便 于进一步分析。
有人提供了一个价格较高但更精确的电路,可以皮秒级测试抖动和偏移,这种被称为EDTC的电路以免打扰方式取样信号,并通过低速串行信息发出测试信息。当成本不成问题时,精确信号监视概念就能被研究人员所接受,甚至会产生片上示波器的想法。
ILS单元
虽然任何ILS传感器都能用于完整性损耗检测,但为了简单、经济和实验的目的,我们还开发了自己的ILS单元。下面将简要介绍这种单元的电路和功能,但这种单元的详细功能不在本文讨论范围。
本例所用的ILS是如图2所示的时延破坏传感器。可接受的时延范围(ADR)被定义为触发时钟沿开始的一段时间,所有输出跳 变必须在这段时间内发生。测试时钟用于创建窗口,以确定可接受的偏移范围。如果输入信号a的跳变发生在b为逻辑’0’的时间内,那么信号a就在可接受的时 延范围内。任何在b为逻辑’1’的时间内发生的跳变均经过传输门传递给XNOR门,这是利用动态预充电逻辑实现的。根据合理的时延范围调整反向器1。在b 为1的时间内有信号跳变时输出c就为1,直到b变为0,开始下一个预充电循环周期。输出用来触发一个触发器。图3所示为输入信号a有2个信号跳变的单元 SPICE仿真,采用0.18μm技术实现。第1个信号跳变发生在0.2ns处,当时b为0,输出保持为0。第2个信号跳变发生在3.5ns处,此时b为 1,由于超出了可接受的时延周期,输出c保持为1直到b变为0。时延传感器还能检测到由串话引起的跳变错误。脉冲可以被反馈到触发器以存储时延发生事件, 供以后进一步阅读/分析。
增强的边界扫描单元
边界扫描是一种被广泛使用的测试技术,它要求在输入或输出引脚和内部内核逻辑之间配置边界扫描单元。边界扫描测试技术能够高 效地测试内核逻辑和互连。图4给出了传统带移位和更新节点的标准边界扫描单元(BSC)。Mode_1使单元处于测试模式。在扫描操作中数据通过移位寄存 器(Shift-DR状态)进行移位
。通过扫描输入端口(TDI)被扫描进边界扫描单元的测试模式在Update-DR状态(UpdateDR信号)下得到并行使用。连接于内部逻辑和输出引 脚之间的边界扫描单元可以并行捕获电路响应,并通过扫描输出端口(TDO)扫描输出。利用JTAG标准(IEEE 1149.1)可以测试互连的粘连、开路和短路等故障情况,这是通过“EXTEST”指令实现的,在该指令操作下TAP控制器利用BSC从互连中分离出内 核逻辑。但这种测试的目的并不是测试互连的信号完整性。为了测试互连的信号完整性,需要对标准架构作少许的改进。
监视BSC(OBSC)
建议在互连的接收侧放置一个新的使用ILS单元的BSC,如图5所示,这种新的BSC被称为监视BSC (OBSC)。ILS被加在接收侧单元,它们能够捕获互连末端上带噪声和时延的信号。如果它接收到具有完整性问题(如时延破坏)的信号,它会在输出端输出 一个脉冲,并将触发器置为“1”。OBSC有2种工作模式:
1) 完整性模式(SI=1):选择信号F。在每个Shift-DR状态通过扫描链输出被捕获的完整性数据,并用于最终的评估。
2) 正常模式(SI=0):在这种模式中ILS被隔离,每个OBSC被当作标准BSC使用。
在扫描输出过程中,我们需要捕获输出F信号并送至FF1。在本例中sel应置为0,因此SI和ShiftDR应分别为1和 0。当扫描输出过程开始后,D1被传送到Q1,并用作下一个单元的TDI。信号完整性信息被捕获进FF1后ILS触发器复位。在将F值送至Q1后,必须格 式化扫描链。在本例的Shift-DR状态期间,TDI输入必须连接至FF1。因此必须将sel置为1(SI=’1’,ShiftDR=’1’)从而隔离 出ILS路径。如图5所示,SI和ShiftDR需要进行或操作,以选择和发送信号F到D1,并生成扫描输出用的扫描链。
图6显示了sel与SI和ShiftDR间的从属关系。如图所示,在Capture-DR状态,信号F被选中,扫描链在 Shift-DR状态得到格式化,并根据被测试的线数扫描输出数据。表1给出了信号sel的真值表。只有一个控制信号(即SI)是由新指令生成的。执行信 号完整性信息的监视有三种方法:1)应用每个测试模式后读出;2)应用测试模式子集后读出;3)应用整个测试模式后一次性读出。具体选择哪种方法取决于可 接受的时间开销。第1种方法非常耗时,但它可以尽可能详细地显示每个互连的完整性信息。第3种方法速度非常快,但完整性信息比较少,因为只能得到哪个模式 或哪个模式子集引起完整性故障的信息,无法获知故障类型。方法2可以帮助用户在测试时间和准确性之间取得平衡。
收藏
分享
评分
继承事业,薪火相传
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议