首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 测试测量与医学成像领域的模拟技术趋势
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
测试测量与医学成像领域的模拟技术趋势
发短消息
加为好友
yuyang911220
当前离线
UID
1029342
帖子
9914
精华
0
积分
4959
阅读权限
90
在线时间
286 小时
注册时间
2014-5-22
最后登录
2017-7-24
论坛元老
UID
1029342
性别
男
1
#
打印
字体大小:
t
T
yuyang911220
发表于 2016-12-24 09:36
|
只看该作者
测试测量与医学成像领域的模拟技术趋势
解决方案
,
电子技术
,
系统集成
,
电子市场
,
分辨率
架构领域的系统集成及发展是未来电子市场成功的关键。实现成功的主要目标包括:使产品外型更小、功能更多、功耗更低,并且成本也更低。未来的集成解决方案将以当今的分离式解决方案为开发基础。制造商利用工艺技术推动市场发展,向市场提供集成度更高的产品,在缩小尺寸、降低功耗及成本、提高可靠性的同时提高性能。
成功的路上充满挑战,特别是在测试测量与医学成像应用领域尤其如此。上述领域涉及高精尖技术,因此要求采用速度最快、分辨率最高的电子技术,才能设计出独树一帜的未来产品。数字电子技术的发展正在推动相关领域的进步,而模拟电子技术也同样重要。
在测试测量与医学成像应用领域,数字电子技术通常在软件和/或固件控制下执行多种复杂功能。
现实世界的信号(如声和光等)是持续的,我们需采用模拟信号处理技术来应对" 真实"的环境。用模拟电子技术通过感应器进行信号采样并带动传感器。
我们可将数模转换器 (DAC) 与模数转换器 (ADC) 等混合信号产品用于实现模拟和数字之间的连接。尽管这些器件搭建了数字与模拟间的桥梁,但我们仍将其视为模拟元件。
本文将给出测试测量与医学成像应用领域的实例,并讨论未来的发展趋势。
医学成像:超声
图 1 给出了超声通道的结构图。通常来说,接收机与发送器共用同一变送器。发送器将向变送器发送高振幅脉冲。这时将开关设置为接收机输入,以便检测回声或从病人处反 回信号。
我们提供钳位,以确保接收通道不因发送器的高幅度信号而饱和。低噪声放大器(LNA) 用于放大返回信号,并设置接收机的噪声系数。
随着信号深入人体组织,它会逐渐减弱,而返回信号则随着时间的流逝而要求更高的增益,以保持可接受的 ADC 水平。因此,LNA 随后还要加上时间增益放大器,该放大器编程后可补偿信号的衰减。
信号的带宽受低通滤波器 (LPF) 限制,能够降低通道内噪声,并达到防止信号混淆的目的。由于大多数高速的高精度 ADC 都使用差分输入,因此需将信号从单端 (SE) 转换为差分(Diff)。信号随后转换为数字形式,在数字域进行进一步处理。
在超声中形成的波束使用多个通道来构成图像。高性能系统中使用的通道超过 128个。新一代系统的通道数量还将继续增加,达到 1024 个。
图1 超声接收机结构图
超声的未来趋势
为了降低超声设备的成本并提高性能,我们应当对其功能进行集成。通常集成的第一步就是将多种部件集成在一个封装中,并借助先进的架构进行性能提升。因此,多通道系统不是用单个部件就可以实现的,而是通过多种部件的集成来实现,它们可使尺寸更小、功耗及成本更低、可靠性更高。
以TI的VCA2611/6(图2)与ADS5271(图3)为例,将多个放大器与 ADC 封装在一起。这些元件可用于实施以上所示大多数模拟信号的调节工作。
VCA2611/6 包含两个低噪声前置放大器 (LNP) 以及低噪声可变增益放大器 (VGA)。VCA2611 是 VCA2616 的升级版本,其输入处可处理 -2.0V 负向输入峰值,在低噪声前置放大器之前实现较慢的廉价输入钳位二极管 (VCA2616 只能处理 -0.3V 的峰值)。在某些设计中,我们甚至不需要输入钳位。
VCA2611/6 集成了有源终端 (AT) 作为其架构的一部分。通过有源终端可实现低输入阻抗,与传统的分路终端 (shunt termination) 相比,改善了 4.6dB 的噪声指数。我们也可改变终结值以适应不同的信号源。有源终端结合最大增益选择 (MGS) 可为我们实现最佳的噪声性能。
低噪声前置放大器具备差分输入与输出功能,可设置实现 5dB、17dB、22dB 或25dB 的增益。低噪声前置放大器的输出可用于外部信号处理,如低通滤波。
可变增益通过模拟电压进行控制,其增益可在 0dB 到最大增益选择寄存器设置的增益值之间变动。用户能够对可变增益进行编程,使动态范围最优化。VCA 输入可从低噪声前置放大器转换到外接电路,以适应不同的应用。将低噪声、增益以及增益范围的可编程性相结合,能够使 VCA2611/6 在许多应用中都成为一种功能丰富的构建块,因为对于这些应用来说噪声特性至关重要。
未来的 VCA2611/6 系列产品将实现更高的性能与功能,从而推动所用元件数量的减少。
图2 VCA2611/6 功能结构图(二选一通道)
ADS5271 是一款高性能、12 位、50MSPS 的 8 通道并行模数转换器 (ADC)。ADS5271 在 20MHz 上具备 70.5dBFS(典型)的 SNR 以及 82dBc(典型)的SFDR。
3.3V CMOS 技术实现了非常低的功耗,仅为 957mW,这为实现最高的系统集成密度留有余地。串行 LVDS(低电压差动信令)输出减少了接口线路数量,减小了封装尺寸,从而进一步提高了密度。
ADS5271 可由内部或外部参照驱动,不过通过内部参照模式才能实现最佳性能与最简系统设计。该器件采用节约面积的散热增强型 PowerPAD、TQFP-80 封装。
由于 ADS5271 中的通道数量已经很高,因此该系列的未来产品将致力于提高采样率。这将通过过采样减少模拟滤波要求。
图3 ADS5271 功能结构图
测试测量:引脚电子技术
我们将自动测试测量 (ATM) 设备用于测试通信系统、计算机、工业系统以及许多其他最终应用中使用的半导体器件。接受测试的器件包括模拟、数字、混合信号、逻辑以及存储器等。为了对这些器件进行测试,我们应生成信号,激活被测试器件(DUT) 并测量响应。用于此目的的电子技术一般称作“引脚电子技术”,而且通常包括以下功能:
以任意电平将格式化数字模型驱动到 DUT;
从 DUT 读取数字模型,并以任意阈值水平获取定时测量结果;
动态设置 DUT 输出端口的负载条件;
强制电压并测量电流,以及强制电流,测量电压。
我们通过以下组件来实现上述功能,图 4 所示为功能结构图。
DAC
数模转换器 (DAC) 生成模拟信号,其用于驱动被测试器件,并用于实现各种功能,如设置窗口比较器、PMU 以及有源负载水平等。12 位或 13 位的分辩率较常见,而未来产品则要求 16 位乃至更高的分辩率。由于可编程信号和电平数量较多,因此我们需要大量 DAC 来实现完整的测试解决方案。
驱动器
为了实现正确测试某些器件所需的电平,需要一个驱动器放大器。驱动器放大器必须能够提供相关电压并具备 DUT 所要求的输出驱动功能。驱动器输出必须为三态输出,这样它才不会干扰从 DUT 返回的信号的测量。
窗口比较器
窗口比较器用于测试是否成功通过。测试存储器就是一个很好的使用实例,这时将数据模式写入 DUT 并被读出。
参数测量单元
参数测量单元可提供强制电压、强制电流以及测量电压与电流测量等功能。它可用于持续性测试,进行电压、输入电流以及漏电流测量。功能组合如下:
强制电压/测量电流 (FVMI);
强制电流/测量电压 (FIMV);
强制电压/测量电压 (FVMV);
强制电流/测量电流 (FIMI);
无强制/测量电压 (FNMV)。
有源负载
有源负载可用于提供 DUT 负载。通过 DAC 输入可对源极与汲极电流进行编程。
温度传感器
我们还包括了可提供温度信息的温度传感器。
图4 引脚电子技术功能结构图
引脚电子技术的未来趋势
到目前为止,引脚电子技术执行功能时需要彼此差异很大的技术--一种技术用于高速电路,而另一种技术则用于高精度直流 (DC) 电路,而且我们还要求采用不同的技术处理混合信号(如 DAC)功能。
尽管某些功能已经集成到了一起,而且目前也已经提供,但大多数解决方案都要求两到三颗芯片才能完全实现测试头。为了降低成本、提高功能引脚功能,并增加相同测试头数量下的引脚数量,我们应当进行功能集成,外部组件必须最小化,而且还应充分挖掘有关架构方面的改进。图 5 显示了我们所建议的一种引脚电子技术器件,其在同一芯片上集成了上述所有功能。
未来,这种芯片将用于减小测试解决方案的尺寸和成本,而这也将相应降低被测试器件的制造成本,此外,由于复杂性降低,这顺便也实现了提高可靠性的优势。
图5 集成的引脚电子技术
工艺技术实现了更高的集成度
有四种制造工艺可实现测试测量与医学成像领域更高的集成度,它们是:CBC-10、C05、BiCom II 以及 BiCom III。
CBC-10
TI 采用 CBC-10 工艺制造 VCA2611/6,这是一种 10V 互补双极晶体管模拟工艺,具备用于数字功能的 CMOS。
CBC 二极晶体管的特征尺寸仅为 1 _m (drawn),CMOS 电路的密度为 0.8 _m,是一种领先的工艺,为 NPN 以及 PNP 晶体管分别提供了 10GHz 和 7GHz 的截止频率。它还具备 80V 的典型尔利电压。此外,除了核心互补高速双极器件之外,其还采用了模块化方法来添加肖特基二极管、JFET 晶体管、高热能无源器件以及亚微米 CMOS 作为可选模块。
该工艺实现了高质量、低噪声的 JFET 晶体管,其可实现出色的高阻抗输入级。该工艺还具备可微调的薄膜电阻器以及高精度电容器,实现最小的寄生效应以及最佳的线性和跟踪性能。高精度电阻器与电容器实现的线性为每伏特数 ppm。举例来说,高精度电容器的线性比可为 5 ppm/V,电压系数为 10 至 50ppm/V。这就能够实现噪声与失真性能方面的显著提升。该工艺还为高密度 CMOS 电路提供了额外的隔离,提供了隔离构建电路的分开场所 (separate tub)。这对混合信号设计而言是至关重要的,因为这能够最小化串扰并改善精度,以及提高模拟电路的速度。这样,我们就实现了更高的精确度、更高的增益以及更快速的模拟电路。总而言之,CBC-10 工艺实现了数字控制、粘接逻辑以及与微控制器与 DSP 相连的接口。除了能在 ±5V 上运行高性能模拟与混合信号电路之外,CBC 还采用 0_5 V 的 CMOS 接口。
收藏
分享
评分
继承事业,薪火相传
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议