首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 变频系统群时延测量技术探讨
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
变频系统群时延测量技术探讨
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2014-2-12 19:25
|
只看该作者
变频系统群时延测量技术探讨
测量
,
测量
,
技术
,
技术
,
网络
引言
群时延是描述传输系统相频特性的重要指标,其测量方法大致可分为矢网法和调制法两类。调制法又分为调幅(AM)和调频(FM)两种。在实际使用中,由于FM比AM具有更好的抗干扰特性,因此被广泛采用,本文也采用FM法。
群时延基本概念
群时延的提出是基于对传输系统相频特性的描述,是群信号通过线性或非线性网络后信号整体产生的时延,其数学表达式为
上式中,j (w)为系统的相频特性,ω为载波信号角频率。
在线性传输网络中,系统相频特性在整个频带内和频率成正比,在工作频带内群时延为一常数,这样的系统对信息能无失真传输,如图1所示。
图1 线性网络相频曲线
但在实际应用中系统都不是理想系统,相频曲线上的不同位置具有不同的负斜率,如图2所示,
。
图2 非线性网络相频曲线
信号经过图2所示的系统后就会发生失真,这种系统通常被称之为非线性网络。
矢网法理论依据
矢网的测试方法基于群时延的定义,先测出传输系统的相频特性,然后再对相频曲线进行微分得出群时延。这种方法的测试精度由相位测量精度和“孔径”大小决定,相位测量精度越高,群时延测量精度也越高,同时孔径的选取也十分重要。所谓“孔径”实际上是群时延定义式中的分母部分。显而易见,在一定的相位测量精度下,选取较大“孔径”,能够有效改善群时延测量结果。但选取过大的“孔径”实际上又违背了群时延定义中的微分定义。本文根据安捷伦公司的资料提供,孔径最小值的取值方法为:测量的频率范围/(测量的频率点数-1),也即选取相频曲线相邻两点做差分;孔径最大不得超出测量频率范围的20%。同时应该注意,选取“孔径”时,测量的两个频点之间的相位差不应大于180度。
调制法理论依据
不同频率的正弦波通过传输系统后,相位会发生不同变化,那这种变化对传输信号及信号所承载的信息会带来什么影响呢?考虑输入信号为:
.
其中,fc是载波中心频点,am(t)是低频调制信号,可以对载波进行调幅或调频。传输系统的幅频特性为:
其中,G(f)为传输系统的幅频特性,Q(f)为传输系统的相频特性。
经公式推导,合成信号的输出为:
其中af为每个频点对应的幅度,τc为载波的相位时延,τg为相频曲线上对应每个频点处的负斜率,即每个频点处的群时延。
对比(2)和(4)可以得出如下结论:已调制信号的群时延可以通过测试调制信号的时延得到。这一结论让我们可以用调制的方法测量传输系统的群时延。
也可以从另一方面来理解。对于一个信号来讲,真正有用的部分是信号所承载的信息,而信息都包含在调制信号中。如果在工作频带内调制信号的群时延是一常数,那么信息经过传输系统后,只是产生一个延迟,信息没有产生失真。反之,在工作频带内,调制信号的时延随着频率的变化有波动,所承载的信息就会发生失真。
应该指出的是,调制法在实际测量中是测调制信号经过传输网络前、后的时间差。这样一来,经过被测件后,解调出的低频信号质量就直接影响测量精度.
几种测量方式的系统组成
及结果对比
本文在实验中采用了矢网法和调制法,其中调制法分别采用了三种仪器作为“时间间隔测量仪”进行测试,下面对四种测量方式的测试过程及结果进行说明。
这里使用的被测件是一个C频段的变频系统,其输入端中心频率为6224GHz,本振2225MHz,输出端的中心频率为3999GHz,工作带宽为36MHz。在矢网法中进行了混频器矢量校准。在调频法测试中,则利用了频谱仪E4448A的下变频功能,把被测件的输出信号变频到321.4MHz的中频,然后在中频对FM信号进行解调和测量。
矢网法中的矢量网络分析仪有矢量校准和频率偏置功能,我们选用E8363B分析仪,测试中用两对和被测件有同样变频关系的混频器+滤波器,要求在校准和测量过程中都需要把两对校准混频器(校准时用)或混频器+被测变频器(测试时用)、激励源、本振源、矢网共时基。设置矢网中心频率为3999MHz,测量带宽为36MHz,测量点数为101个点。进行矢量校准后,在测试支路换上被测变频器,直接得到测试结果。测试框图如图3所示。
图3 矢网法测试框图
调制法中,上行激励源要求有内调频功能,低频调制信号从“LF”口输出,到“时间间隔测量仪”的一个端口,已调载波经过被测件后,利用频谱仪的下变频功能,把信号下变频到中频信号,经过调频解调器解调出低频调制信号,到“时间间隔测量仪”的另一个端口,由时间间隔测量仪测出两个低频信号的时间差,即为该频点的群时延值。在工作频带内,以一定步长改变上行激励源的射频信号频率,即得到工作带宽内群时延变化。测试框图如图4所示。
图4 调制法测试框图
实验中,在E8257D中设置调制信号为400kHz,调制频偏为1MHz,“FM解调器”解调出的信号比较稳定,这样保证了测量精度。仪器分别采用示波器54855A、时间间隔分析仪53310A、频率计53132A做时间间隔测量仪,测试结果如图5所示,
图5 四种方式测试结果
其中曲线是对中心频率进行归一化后的结果。可以看出,四种方式的测试结果十分吻合。
测量分析及实际测量时的建议
从图5可以看出,几种方式在实际使用中都是可行的,可根据具体情况选择使用。
矢网法在测试变频系统时,从被测件的相频特性曲线微分计算得到群时延,比较直观,因为有精确的矢量校准,可以进行绝对群时延的测试。同时,矢网相位测量精度高,接收机中频带宽小(E8363B可达到1Hz),原则上不受被测件带宽的限制,这一特点对测窄带变频器十分有意义。测试时,进行正确的校准后,选择合适的孔径都会得到稳定正确的测试结果。但为完成此校准,针对不同的变频系统要配备专用混频器和滤波器,还要求被测件能引出时基信号,连接比较复杂。相比之下,新一代PNA-X系列矢网,不需要共时基,能简化链路连接。建议在实际使用中,校准支路和测试支路一旦搭建好,要保持连接固定、不晃动,这样能减少误差。尤其在系统级测试中,一定要保证这一点。另外,要根据选用的混频器性能,给出足够大的本振信号和射频信号,无论校准或测试时都要保证这一点。
调制法中“解调器”的解调质量十分重要,解调出的信号越稳定,测试结果精度越高。通常解调质量受四个因素影响:被测变频器带宽、调制指数β、调制频率fm和调制带宽BW。
一方面,为保证解调质量,调制带宽BW要远小于被测变频器带宽;另一方面,调制制度增益GFM越高,越有利于解调质量,从公式(5)可以看出,调制制度增益正比于调制带宽,这样一来,就要综合考虑调制带宽BW的取值。我们经过实验给出BW的推荐取值:最大不超过被测变频器带宽的20%。
另外,调制信息全部包含在调制信号上,选择调频载波为零的点,也有利于解调质量。表1列出β取下列各值时,载波会出现零点。
表1 调频载波各零点数值表
从公式(6)、(7)还可以看出,减小调制指数β和调制频率fm,也能降低调制带宽BW。对于宽带变频器件(MHz),选取β和fm的余地比较大。对于窄带变频器件(kHz),理论上要求对应的调制频率fm越小越好,而实际上,由于工程实现时受硬件性能影响,fm一般不能小于50kHz(经验值)。这样一来,β取2.405时,对于小于500kHz的窄带变频器,用硬件解调的方式基本是测不准的。对于窄带变频器件,建议采用软件解调方式。
BW=2(?f+fm)=2 fm(β+1) (6)
β=?f/ fm (7)
调制法中要想进行精确校准,必须有一个和被测件有同样变频性能的标准变频器,在实际应用中,很难找到这样的标准器件。因此,如果只关心被测变频器在工作带宽内的群时延变化,不测绝对群时延,不用对测试支路进行校准,采用这种方法比较好。这样相比测试带宽,连接电缆、变频器、解调器可以认为是宽带器件,在工作带宽内不会影响测试结果。实验也证明了这一点。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议