首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

分析几种代表性嵌入式操作系统的电源管理实现

分析几种代表性嵌入式操作系统的电源管理实现

本文将以典型硬件的电源管理功能为基础,分析几种代表性嵌入式操作系统的电源管理实现,探讨电源管理系统软件现状及研究应用前景。在供电电压Vdd下消耗的功率P如公式(1)所示:
P=C*V2dd*fC+VddIQ (1)
这里C为电容,fC为开关频率,Vdd为电源电压,IQ为漏电流。C*V2dd*fC为动态功耗;VddIQ为静态功耗。随着芯片运行速度的提高和工艺尺寸的不断缩小、密度增加,其动态功耗和静态功耗也在不断增长,加剧了电源管理的复杂性。
有一种方法可以协调高性能与低功耗之间的矛盾,就是根据系统负载进行性能调节。从公式(1)中我们可以得知,对一个给定负载,动态功耗的量值与供电电压的平方成正比,与运行频率成正比。减少供电电压并同时降低处理器的时钟速度,功耗将会呈平方速度下降,代价是增加了运行时间。
此外,还可以通过停止芯片模块的时钟和电源供应的办法,将能耗降至最低,代价是重新启动该模块时需要额外能耗。因此,通过有效地利用上述能耗管理方法,得到性能和功耗间的最佳平衡,达到节能最大化。
嵌入式微处理器对电源管理的支持
从8位单片机到32位高性能处理器,都在一定程度上支持电源管理功能。
例如处理器支持多种电源状态,如图1所示。系统电源状态转化

系统在运行态(Run)时,设备全部正常工作。在空闲态时,处理器按照特定的模式,进行相应的节能。在挂起状态下,处理器挂起,主存储器运行在节能的自刷新模式,只有功耗管理电路、唤醒电路继续工作。现有的单片机、ARM等32位RISC处理器一般都支持以上模式,下面分别加以介绍。
ARM的电源管理技术
ARM实现了不同级别的低功耗管理技术,如表1所示。
表1 ARM不同级别的低功耗管理技术
电源功耗管理级别
Architecture
Level
System Level
Block
Level
Logic Level
Process
Level
实现动态低功耗技术
Clock Gating
Clocking
Domains
voltage
Domains
Low Voltage
Cells
Low Power
Library
实现静态低功耗技术
Sleep Mode
Power Gating
State Store/Restore
High Voltage
Cells
Artisan
PMK
32位Cortex-M3设备执行任务的速度比8位设备快许多倍,所以活动模式中所用的时间更短,平均功率相应降低。据ARM估计,32位的Cortex-M3处理器内核以0.19mW/MHz(0.18微米)极低的功耗在特殊应用中占据优势。
其功耗如表2所示。表2 Cortex-M3能量消耗
能量消耗
1MHZ
16MHZ
32MHZ
Active
mW
0.29mW
4.5mW
9mW
Sleep
mW
0.01mW
0.16mW
0.3mW
Standby
µW
1µW
1µW
1µW

单片机的电源管理支持
ATMEL采用picoPower技术的AVR微控制器显著降低了功耗。在传感器网络应用中节点工作时按功率消耗由小到大有睡眠(sleep)、空闲(idle)、接收(receive)及发送(transmit)等四种模式。大多时间内,节点都处于睡眠与空闲模式,只有少量能耗。这些技术包括一个超低功耗晶振、睡眠模式下自动终止和重激活欠压检测器、能完全停止对外围设备电力供应的省电寄存器以及能够关闭特定管脚输入的数字输入中断寄存器。
自适应电压调节(AVS)用一个闭环电压控制系统来实现,它无需配对的频率、电压,能提供更优的节能效果。高端ARM处理器还支持功能更强大的电源管理功能,通过电压调节与频率调节相结合,极大地降低功耗,提高能量效率。动态电压调节(DVS)是通过对系统的负载预测,在一个开环电压控制系统中用多组能耗级别的频率、电压对来实现。通过定义操作点(Operation Points,OP)数据结构来抽象表示频率、电压等能耗级别,如表3所示。
表3 OMAP1610操作点参数
参数操作点
CPU电压
(mV)
DPLL频率
乘法器
DPLL频率
分频器
CPU频率
控制
TC
控制器
192MHz~1.5V
1500
16
1
1
2
168MHz~1.5V
1500
14
1
1
2
84MHz~1.5V
1500
14
1
2
2
84MHz~1.5V
1100
14
1
2
2
60MHz~1.5V
1500
5
1
1
1
60MHz~1.5V
1100
5
1
1
1
更先进电源管理功能的嵌入式微处理器还有90nm工艺的Marvel PAX300系列,提供更细颗粒的电源管理技术(称为MSPM),API和驱动程序;其中,192MHz-1.5V操作点参数1500表示OMAP3.2核心电压1500mV;16表示DPLL频率控制12MHz晶振输入倍频16倍;1表示分频为1;1表示OMAP3.2核心分频为1(所以它运行在192MHz);2表示TC(交通控制器)分频为2(所以它运行在96MHz);如果使用TI的DSP代码,则后四个参数为不可控,均使用默认值。
典型嵌入式系统能耗组成
据统计,典型嵌入式系统中CPU占20%~25%,LCD以及背光占用了20%,内存占15%,电源转换占5%~10%,其他的组成占用剩余的30%~40%。在这些元件中,有些元件性能指标和能耗固定;有些元件可在不同时间工作,并有多种可控的耗能状态。后者的有效使用成为系统节能的关键所在。典型嵌入式系统的能耗组成如图2所示。

 本文来自赛微电子网,转载请注明出处: http://www.srvee.com/html/26/n-52326.html
返回列表