- UID
- 856476
|
笔者曾协助多家公司工程师,在AndesCore上发展firmware。我们发现,当客户开发Non-OS的程序代码,最常遇到的问题在于开发者不知如何撰写linker script。网络上有GNU ld的使用文件,但是linker script的范例太少,尤其开发者需要撰写进阶的linker script,常常不知如何下手。
本篇文章我们分享如何实作ROM patch。使用晶心CPU建构的embedded system,一般具有CPU、外围IP及RAM、ROM。部份客户使用ROM code开机,程序代码放在ROM内,data section放在SRAM里。ROM code的特性是成本低,跟着IC光罩一起生产,当IC制作完成即不可修改,若有制作上的错误或是程序代码逻辑上的错误,只能用ROM patch的方式修补。也就是将需要修补的程序代码放到小容量的flash里。这就是我们今天要分享的技术。
1. 主程序架构
首先介绍主程序的架构。IC的Memory layout如下图。
图表1 主程序的memory layout图
红色框线的部份,为主程序编译的范围。主程序main会呼叫到func1、func2和func3这3个function。
在上图中,黄色区域是IC的ROM,这部份的程序是IC制作出来即不可以改变。绿色部份是flash。在图中,flash分成2区,一个是jump_table,存放func1~func3的地址。剩余的空间FUNC_PATCH,预留给patch使用。
为了要修补ROM内的function,所以规划出jump_table区域,原本都是指向ROM的function。如果ROM里的部份function损坏或是需要改写,就把jump_table改为指向FUNC_PATCH里新建的function。
1.1 源代码
主程序的程序代码如下:(main.c)
#include
#include
int func1(int);
int func2(int);
int func3(int);
int num1=1;
int num2=2;
int num3=3;
typedef struct strfunptr {
int (*func_a)(int);
int (*func_b)(int);
int (*func_c)(int);
}sfptr;
sfptr jump_table __attribute__ ((section ("FUNC_TABLE")))= {func1, func2, func3};
int main(void) {
printf("func1(30)=%d\n",jump_table.func_a(30));
printf("func2(30)=%d\n",jump_table.func_b(30));
printf("func3(30)=%d\n",jump_table.func_c(30));
return EXIT_SUCCESS;
}
int func1(int x){
return x*num1;
}
int func2(int x){
return x*num2;
}
int func3(int x){
return x*num3;
}
上面的程序代码中,第16行的程序代码__attribute__ ((section ("FUNC_TABLE"))),作用是将jump_table放在特定的”FUNC_TABLE”section里。
1.2 主程序linker script (仅列需要修改的部份)
FUNC_TABLE 0x510000 :
{
*(.FUNC_TABLE)
}
Flash的地址由0x510000起,将FUNC_TABLE固定在flash的最开头,语法如上。
1.3 主程序执行结果
func1(30)=30
func2(30)=60
func3(30)=90 |
|