放大器建模为模拟滤波器可提高SPICE仿真速度 2
- UID
- 864567
|
放大器建模为模拟滤波器可提高SPICE仿真速度 2
下面的网络列表模拟5倍增益放大器传递函数的拉普拉斯变换。转换为滤波器拓扑之前,最好运行仿真以验证拉普拉斯变换,并根据需要延长或缩短建立时间以调整带宽。
***GAIN_OF_5 TRANSFER FUNCTION***
.SUBCKT SECOND_ORDER +IN –IN OUT
E1 OUT 0 LAPLACE {V(+IN) – V(–IN)} = {89.371E12 / (S^2 + 3.670E6*S + 17.874E12)}
.END
图3所示为时域的仿真结果。图4所示为频域的仿真结果。
图3. 5倍增益放大器:时域仿真结果
图4. 5倍增益放大器:频域仿真结果
脉冲响应的峰化使得我们可以轻松保持恒定的阻尼比,同时可改变建立时间以调整带宽。这将改变复数共轭极点对相对于实轴的角度,改变量等于阻尼比的反余弦值,如图5所示。缩短建立时间会增加带宽,延长建立时间则会减少带宽。只要阻尼比保持不变且仅调整建立时间,则峰化和增益不受影响,如图6所示。
图5. 5倍增益传递函数的复数共轭极点对
图6. 建立时间调整与带宽的关系
一旦传递函数与实际放大器的特性一致,就可以将其转换为滤波器拓扑。本例将使用Sallen-Key和MFB两种拓扑。
首先,利用单位增益Sallen-Key拓扑的正则形式将传递函数转换为电阻和电容值。
根据 s项可以计算 C1:
选择易于获得的电阻值,例如R1 和 R2均为10 kΩ,然后计算 C1。
利用转折频率的关系式求解C2。
相应的网络列表如下文所示,Sallen-Key电路则如图7所示。E1乘以阶跃函数以获得5倍增益。Ro提供2 Ω输出阻抗。 G1 是增益为 120 dB的VCCS。 E2为差分输入模块。频率与增益的仿真与采用拉普拉斯变换的仿真完全相同。
.SUBCKT SALLEN_KEY +IN –IN OUT
R1 1 4 10E3
R2 5 1 10E3
C2 5 0 10.27E–12
C1 2 1 54.5E–12
G1 0 2 5 2 1E6
E2 4 0 +IN –IN 1
E1 3 0 2 0 5
RO OUT 3 2
.END
图7. 采用Sallen-Key滤波器的5倍增益放大器仿真电路 |
|
|
|
|
|