基于STM32单片机的大扭矩永磁同步电机驱动系统3
![Rank: 6](images/default/star_level3.gif) ![Rank: 6](images/default/star_level2.gif)
- UID
- 864567
|
![](http://images.eccn.com/silabs/silicon_chip_980x60_202203.jpg)
基于STM32单片机的大扭矩永磁同步电机驱动系统3
![](http://gg.eefocus.com/www/delivery/lg.php?bannerid=1869&campaignid=534&zoneid=212&loc=http%3A%2F%2Fwww.eefocus.com%2Fembedded%2F317830%2Fp3&referer=http%3A%2F%2Fwww.eefocus.com%2Fembedded%2F317830%2Fp2&cb=bad132a5d4)
2. 1. 3 主电路
主电路的整流电路采用了DD600N12 整流模块; 软启动电路采用CM600HU-24F 型号IGBT 功率开关取代继电器以提高系统可靠性,当电容器组充电到母线额定电压的80% 时,将IGBT 接入电路; 滤波电路选择16 个6800 μF 电解电容; 制动电路选择CM400HU-24F 型号IGBT 作为开关元件。考虑大电流功率器件的干扰、散热及经济性等因素,选择6 个独立单元的IPM 模块PM800HSA120的逆变电路方案。PM800HSA120 内部集成有驱动和保护电路,具有过压、欠压和温度保护功能,额定电流800 A,反偏电压1200 V,工作频率可达20 kHz。为了进一步提高IPM 的抗干扰性和可靠性,本文对其驱动电路和保护电路进行了加强设计和一些额外处理。如图6 所示,对IPM 的驱动信号进行了差分处理,将控制芯片STM32 发出的六路驱动信号利用差分驱动芯片变为12 路信号,再在IPM 驱动板上利用差分接收芯片还原为6 路驱动信号,然后经过高速光耦的隔离驱动再送给IPM,如图7 所示,以抑制共模干扰信号,增强了IPM 驱动信号的抗干扰性。图7( a) 所示为W 相的隔离驱动电路; 三相上桥臂采用隔离电源供电,三相下桥臂由一路15 V 供电,图7 ( b) 所示为W 相上桥臂隔离电源电路。
![](http://upload.semidata.info/article/image/2013/02/24/512a0767ac89d-thumb.jpg)
IPM 的故障信号处理电路如图8 所示,出错信号先经过光耦隔离、滤波,然后经过反相施密特触发器,一方面将电压信号反向,另一方面对出错信号进行波形整形,对干扰信号有一定的抑制作用。最后再将处理过的IPM 出错信号输入控制芯片STM32 做出相应处理。
![](http://upload.semidata.info/article/image/2013/02/24/512a07684ca67-thumb.jpg)
图8 IPM 出错信号处理电路
由于IPM 的开关频率较高,而在功率回路中存在寄生电感,在IPM 开关过程中会产生很高的浪涌电压,造成对器件的冲击,影响器件的性能及使用寿命。为此设计了如图9 所示的IPM 缓冲电路,以降低IPM 开通和关断过程的电压和电流尖峰,从而降低器件开关损耗,保护器件安全运行。其中,选择超快恢复二极管RM25HG-24S 作为缓冲二极管,其耐压1200 V,最大反向恢复时间300 ns; 综合考虑本系统驱动电流频率及IPM 本身性能,将IPM 工作频率选为8 KHz,取直流母线寄生电感50 nH,根据计算及试验,最终选择缓冲电容Cs = 3 μF,缓冲电阻Rs = 12 Ω。
![](http://upload.semidata.info/article/image/2013/02/24/512a0767a7f9c-thumb.jpg)
图9 IPM 缓冲电路
2. 2 系统软件设计
系统软件主要由主程序和中断服务程序构成,其中主程序完成各种软硬件的初始化、电机初始位置检测和电机启动等,中断服务程序包括PWM 中断子程序和外部中断保护子程序等。其中PWM 中断子程序是控制系统核心,主要完成对转子电流和速度的采集与处理、PID 调节、电压矢量的计算与选择、PWM 发生等。外部中断子程序主要包括母线电压过、欠压保护、启动保护和温度保护等。当IPM 有出错信号时,STM32 控制高级控制定时器的TIM1_BKIN 信号禁止PWM 输出,保证系统的安全,图10为PWM 中断服务程序流程图。
![](http://upload.semidata.info/article/image/2013/02/24/512a0767ab25d-thumb.jpg)
图10 PWM 中断服务程序
3 实验结果
如图11 所示,为本文所设计永磁同步电机控制系统的STM32 控制板及IPM 驱动板实物。对一台额定功率132 kW、额定电流232 A、输入电压380 V的大扭矩永磁同步电机进行了单元及系统实验。图12 所示为W 相上下桥臂的PWM 波形,测试PWM频率为8 KHz ( 周期125 μs) ; 图13 所示为电机空载运行时W 相的电流波形,表明控制系统的软硬件模块均可有效运行。
![](http://upload.semidata.info/article/image/2013/02/24/512a076797fea-thumb.jpg)
图11 控制电路
4 结语
本文提出了一种基于STM32 的大扭矩永磁同步电机的控制系统,设计了STM32 处理器模块、增益可调的电流检测电路、旋转变压器接口电路、IPM驱动保护电路等,采用矢量控制方法,实现了永磁同步电机速度和转矩控制,并进行了试验验 证,为大扭矩永磁同步电机驱动控制提供了一种稳定可靠、高性价比的方案。 |
|
|
|
|
|