首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

如何编写Linux下Nand Flash驱动 - 04

如何编写Linux下Nand Flash驱动 - 04

. 如果想要操作硬件Nand Flash芯片,先要将对应的CE#(低有效)片选信号拉低,选中该芯片,然后才能做接下来的读写操作所要做的发命令,发数据等动作。
2.Nand Flash的片选与否,功耗差别会有很大。如果数据没有记错的话,我之前遇到我们系统里面的Nand Flash的片选,大概有5个mA的电流输出呢,也许你对5mA没太多概念,给你说个数据你就知道了:当时为了针对MP3播放功耗进行优化,整个系统优化之后的待机功耗,也才10个mA左右的,所以节省5mA已经算是很不错的功耗优化了。
2.1.15.2. 带EDC的拷回操作以及Sector的定义(Copy-Back Operation with EDC & Sector Definition for EDC)
Copy-Back功能,简单的说就是,将一个页的数据,拷贝到另一个页。
如果没有Copy-Back功能,那么正常的做法就是,先要将那个页的数据拷贝出来放到内存的数据buffer中,读出来之后,再用写命令将这页的数据,写到新的页里面。
而Copy-Back功能的好处在于,不需要用到外部的存储空间,不需要读出来放到外部的buffer里面,而是可以直接读取数据到内部的页寄存器(page register)然后写到新的页里面去。而且,为了保证数据的正确,要硬件支持EDC(Error Detection Code)的,否则,在数据的拷贝过程中,可能会出现错误,并且拷贝次数多了,可能会累积更多错误。
而对于错误检测来说,硬件一般支持的是512字节数据,对应有16字节用来存放校验产生的ECC数值,而这512字节一般叫做一个扇区。对于2K+64字节大小的页来说,按照512字节分,分别叫做A,B,C,D区,而后面的64字节的oob区域,按照16字节一个区,分别叫做E,F,G,H区,对应存放A,B,C,D数据区的ECC的值。
Copy-Back编程的主要作用在于,去掉了数据串行读取出来,再串行写入进去的时间,所以,而这部分操作,是比较耗时的,所以此技术可以提高编程效率,提高系统整体性能。
2.1.15.3. 多片同时编程(Simultaneously Program Multi Plane)
对于有些新出的Nand Flash,支持同时对多个片进行编程,比如上面提到的三星的K9K8G08U0A,内部包含4片(Plane),分别叫做Plane0,Plane1,Plane2,Plane3。。由于硬件上,对于每一个Plane,都有对应的大小是2048+64=2112字节的页寄存器(Page Register),使得同时支持多个Plane编程成为可能。 K9K8G08U0A支持同时对2个Plane进行编程。不过要注意的是,只能对Plane0和Plane1或者Plane2和Plane3,同时编程,而不支持Plane0和Plane2同时编程。
2.1.15.4. 交错页编程(Interleave Page Program)
多片同时编程,是针对一个chip里面的多个Plane来说的,
而此处的交错页编程,是指对多个chip而言的。
可以先对一个chip,假设叫chip1,里面的一页进行编程,然后此时,chip1内部就开始将数据一点点写到页里面,就出于忙的状态了,而此时可以利用这个时间,对出于就绪状态的chip2,也进行页编程,发送对应的命令后,chip2内部也就开始慢慢的写数据到存储单元里面去了,也出于忙的状态了。此时,再去检查chip1,如果编程完成了,就可以开始下一页的编程了,然后发完命令后,就让其内部慢慢的编程吧,再去检查chip2,如果也是编程完了,也就可以进行接下来的其他页的编程了。如此,交互操作chip1和chip2,就可以有效地利用时间,使得整体编程效率提高近2倍,大大提高Nand Flash的编程/擦写速度了。
2.1.15.5. 随机输出页内数据(Random Data Output In a Page)
在介绍此特性之前,先要说说,与Random Data Output In a Page相对应的是,普通的,正常的,sequential data output in a page。
正常情况下,我们读取数据,都是先发读命令,然后等待数据从存储单元到内部的页数据寄存器中后,我们通过不断地将RE#(Read Enale,低电平有效)置低,然后从我们开始传入的列的起始地址,一点点读出我们要的数据,直到页的末尾,当然有可能还没到页地址的末尾,就不再读了。所谓的顺序(sequential)读取也就是,根据你之前发送的列地址的起始地址开始,每读一个字节的数据出来,内部的数据指针就加1,移到下个字节的地址,然后你再读下一个字节数据,就可以读出来你要的数据了,直到读取全部的数据出来为止。
而此处的随机(random)读取,就是在你正常的顺序读取的过程中,先发一个随机读取的开始命令0x05命令,再传入你要将内部那个数据指针定位到具体什么地址,也就是2个cycle的列地址,然后再发随机读取结束命令0xE0,然后,内部那个数据地址指针,就会移动到你所制定的位置了,你接下来再读取的数据,就是从那个制定地址开始的数据了。
而Nand Flash数据手册里面也说了,这样的随机读取,你可以多次操作,没限制的。
请注意,上面你所传入的地址,都是列地址,也就是页内地址,也就是说,对于页大小为2K的Nand Flash来说,所传入的地址,应该是小于2048+64=2112的。
不过,实际在Nand Flash的使用中,好像这种用法很少的。绝大多数,都是顺序读取数据。
2.2. 软件方面
如果想要在Linux下编写Nand Flash驱动,那么就先要搞清楚Linux下,关于此部分的整个框架。弄明白,系统是如何管理你的Nand Flash的,以及,系统都帮你做了那些准备工作,而剩下的,驱动底层实现部分,你要去实现哪些功能,才能使得硬件正常工作起来。
2.2.1.内存技术设备,MTD(Memory Technology Device)
MTD,是Linux的存储设备中的一个子系统。其设计此系统的目的是,对于内存类的设备,提供一个抽象层,一个接口,使得对于硬件驱动设计者来说,可以尽量少的去关心存储格式,比如FTL,FFS2等,而只需要去提供最简单的底层硬件设备的读/写/擦除函数就可以了。而对于数据对于上层使用者来说是如何表示的,硬件驱动设计者可以不关心,而MTD存储设备子系统都帮你做好了。
对于MTD子系统的好处,简单解释就是,他帮助你实现了,很多对于以前或者其他系统来说,本来也是你驱动设计者要去实现的很多功能。换句话说,有了MTD,使得你设计Nand Flash的驱动,所要做的事情,要少很多很多,因为大部分工作,都由MTD帮你做好了。
当然,这个好处的一个“副作用”就是,使得我们不了解的人去理解整个Linux驱动架构,以及MTD,变得更加复杂。但是,总的说,觉得是利远远大于弊,否则,就不仅需要你理解,而且还是做更多的工作,实现更多的功能了。
此外,还有一个重要的原因,那就是,前面提到的Nand Flash和普通硬盘等设备的特殊性:
有限的通过出复用来实现输入输出命令和地址/数据等的IO接口,最小单位是页而不是常见的bit,写前需擦除等,导致了这类设备,不能像平常对待硬盘等操作一样去操作,只能采取一些特殊方法,这就诞生了MTD设备的统一抽象层。
返回列表