首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
数字电路
» 高效、低纹波DCS-Control,实现无缝PWM/节能转换
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
高效、低纹波DCS-Control,实现无缝PWM/节能转换
发短消息
加为好友
520503
当前离线
UID
872339
帖子
13270
精华
0
积分
6635
阅读权限
90
在线时间
361 小时
注册时间
2012-3-2
最后登录
2016-3-10
论坛元老
UID
872339
1
#
打印
字体大小:
t
T
520503
发表于 2013-12-19 15:48
|
只看该作者
高效、低纹波DCS-Control,实现无缝PWM/节能转换
工作原理
,
转换器
,
结构图
,
技术
TI 推出了采用DCS-Control™技术的同步降压转换器,它是一款可无缝转换至节能模式的直接控制调节拓扑。这种拓扑融合了电压模式、电流模式以及迟滞控制拓扑的众多优点,并同时实现顺滑转入节能模式。本文为您介绍DCS-Control拓扑的工作原理,展示其在节能模式下的低输出电压纹波、优异的瞬态响应以及无缝模式转换性能。
基本工作原理
DC-Control拓扑基本上是一种迟滞拓扑。但是,它整合了几种电路,同时拥有电压模式和电流模式拓扑的优点。图1显示了DC-Control拓扑的基本结构图(取自TI的TPS62130降压转换器产品说明书)。1
图1 DCS-ControlTM拓扑结构图
DC-Control拓扑的输入共有两个:反馈(FB)引脚和输出电压检测(VOS)引脚。大多数DC/DC转换器的FB引脚输入表现均相同。它是误差放大器或者运算放大器的高阻抗输入,其目的是把FB引脚的误差信号输出至某个内部基准电压VREF。与其它DC/DC转换器中一样,误差放大器提供精确的输出电压调节。在输出电压(FB引脚)和接地之间的分压器,设置输出电压的设定点。就一些器件而言,例如:TI的TPS62131等,通过一个VOS引脚分压器内部连接FB引脚。这样便可设置输出电压,减少2个外部组件,并同时降低FB引脚的敏感度。在误差放大器周围包含相应的补偿,以确保其稳定性。
在输出电容,VOS引脚直接连接至转换器的输出电压。与FB引脚一样,它是控制环路的高阻抗输入。与FB引脚不同的是,VOS引脚进入某个专有电路,形成电压斜升。之后,把该电压斜升与误差放大器的误差信号比较,其同电压模式和电流模式控制的做法一样。VOS引脚到比较器的通路,让DCS-Control拓扑拥有快速的迟滞响应。VOS的输出电压变化直接馈给比较器,并立即对器件的运行产生影响。正因如此,VOS引脚对噪声敏感;因此,输出电压从输出电容器返回至器件VOS引脚的路线应尽可能地短和直。VOS引脚电路周围的相应补偿,目的是确保稳定性。
之后,比较器向控制电路输出一个信号,告诉它是否向栅极驱动器输出一个开关脉冲,以控制高侧MOSFET。比较器与计时器电路协同工作,同时提供最迅速的负载瞬态响应和经过调节的开关频率。
根据VOUT与VIN的比率,计时器设置一个能够扩展比较器“导通”时间控制的最小“导通”时间。器件产品说明书通常会使用一个方程式说明计时器设置的最小“导通”时间,例如:
在这个基于TPS62130的举例中,目标开关时间为400ns;因此,开关频率为其倒数,即2.5MHz。由于VOUT/VIN因素,调节后开关频率维持在输入和输出电压范围,其根据某个降压转换器的理想占空比调节最小“导通”时间。因此,“导通”时间方程式还可写为
,其准确定义了所有降压转换器的“导通”时间。
低侧MOSFET控制较为简单。在高侧MOSFET关闭以后,低侧MOSFET开启,并有效地使电感电流斜降。当电感电流衰减至零,或者比较器让高侧MOSFET再次开启时,低侧MOSFET关闭。施加相应的死时间,以避免MOSFET出现击穿电流。
节能模式
DCS-Control拓扑的一个关键组成部分是其节能模式。一般而言,大多数节能模式均在低负载电流时启用,其通过跳过开关脉冲和降低器件的电流消耗(静态电流)来提高转换效率。跳过开关脉冲让器件工作在非连续导电模式(DCM)下,消除负电感电流(从输出端流向输入端),如若不然,它会出现在轻负载条件下。这类电流只会破坏前面开关周期的工作,并带来更多的损耗,从而降低效率。降低静态电流可以提高超轻负载下的效率,《参考文献2》中对此有详细的说明。
DCS-Control拓扑的节能模式非常简单。它的实现电路与前面所述一样:从节能模式转换至PWM模式期间,在两个不同控制模式之间没有开关操作。其它一些控制拓扑会在一种节能模式控制方法和另一种PWM模式方法之间进行开关切换。这样做,在转换期间可能会出现电子脉冲干扰和随机噪声。本文后面的“无缝转换”将详细说明这种现象。
DCS-Control拓扑使用一种简单的方法实现其节能模式:如果比较器不需要开关脉冲,则不产生脉冲。因此,如果电感电流衰减至零时输出电压高出其设置点(由误差放大器测得),则器件不输出一个新的开关脉冲;反之,降低其静态电流并进入节能模式。除非误差放大器告诉比较器,输出电压已降至其设置点,现在应该升压,否则它将一直等待。之后,器件输出一个持续最小“导通”时间的开关脉冲,把输出电压升高至足以保持在调节范围内的程度。节能模式下,这些电路的最小传播延迟带来高效率和良好调节的输出电压。
持续最小“导通”时间的单个开关脉冲,把最小能量传输至输出端,从而实现最小输出电压纹波。随着轻负载电流增加,单次脉冲更加靠近,并增加开关频率至音频带之上,其速率高于其它节能拓扑。其它拓扑在节能模式下使用数组或者连续脉冲,导致脉冲期间输出端的能量更大。由于输出电压降回其设置点需要花费更长的时间,因此脉冲的间隔更大,从而使有效频率在音频范围内的时间更长。DCS-Control的单脉冲构架,让其可以工作在音频带以上,并且负载电流小于其它拓扑。《参考文献3》介绍了一个节能模式噪声性能的案例研究。
当负载增长到一定程度、单次脉冲之间没有时间间隔时,在比较器告诉高侧MOSFET再次开启以前电感电流不会返回零。DCM边界处出现这种负载状态,届时,转换器退出节能模式,进入PWM模式。
节能模式的输出电压纹波
组合使用节能模式(最小“导通”时间的单次脉冲)和达到零电感电流时进入PWM模式,让DCS-Control拓扑比其它拓扑更加灵活,从而实现更加简单的配置,最终满足系统要求。例如,思考一个12V输入和3.3V输出的系统在节能模式下的输出电压纹波情况。TI的TPS62130评估模块(EVM)工作在2.5MHz设置下,用于图2来演示如何通过增加外部电感和输出电容减少这种纹波。无负载状态用于显示节能模式下的极端输出电压纹波。
图2 TPS62130的输出电压纹波
图2a显示了已经很低的26mV峰值到峰值输出电压纹波,即3.3V输出电压的0.8%,其使用默认电路得到。由于在每个开关脉冲期间传输的能量相同,因此增加输出电容可以减少输出电压纹波。输出电容更高,固定能量带来的电压纹波也就越少(图2b)。由于“导通”时间不变,因此增加电感可以降低开关脉冲内达到的峰值电流。低峰值电流存储的能量也更少(E= ½ × L × I2),因此传输至输出的能量也更少,从而再一次降低了电压纹波(图2c)。注意,每个电路的“导通”时间相同,因为其为器件的内部固定值,无法通过外部组件改变。
工程师还可以设置通过调节电感进入节能模式的负载电流,其把边界更改为DCM。更大的电感带来更小的电感电流纹波,其意味着,电感电流保持在零以上,导致更低的输出电流电平。它可以让节能模式的进入点和输出电压纹波满足各种特殊需求,从而让这种拓扑可以用于各种应用中,包括那些对噪声高度敏感的应用,例如:医疗或者工业应用中的低功耗无线发射器和接收器(参见《参考文献5》)、消费类设备的便携式电源以及固态硬盘电源。
瞬态响应
由于DCS-Control拓扑通过VOS引脚检测实际输出电压,因此其非常适合于对负载瞬态做出响应。该信号直接馈给比较器,并不通过带宽限制误差放大器传输,不影响“导通”时间。因其迟滞特性,DCS-Control拓扑的负载瞬态响应更迅速,而器件100%占空比又进一步增强了它的这种能力。
在这种模式下,只要输出电压恢复需要,器件便可以让高侧MOSFET保持开启。换句话说,比较器的“导通”时间要求得到完全满足。图3显示了TPS62130 EVM通过其100%占空比对无负载到1A负载瞬态做出响应的情况。在瞬态开始和高侧MOSFET开启时之间的300ns时间延迟意味着,瞬态响应几乎完全受大信号问题(电感)的限制,而非小信号问题(控制拓扑)。因此,DCS-Control拓扑并非是器件瞬态响应能力局限的主要方面;在使用特定输出滤波器组件时,它实现了优异的瞬态响应。
图3 瞬态响应期间TPS62130 EVM的100%占空比模式
无缝转换
在前面,我们注意到,在DCS-Control拓扑中,仅一个电路控制PWM和节能模式。它实现了两种控制模式之间的迅速且无缝的转换。另外,当电路的工作状态接近两种模式之间的边界时,它仍然拥有更高的性能。由于不存在模式开关,因此便没有输出脉冲干扰。
图4把TPS62130的模式转换性能同使用另一种控制拓扑的器件进行了比较。在类三角模式下,负载电流(绿色表示的底部线条)范围为10mA到1A。我们同时观察到了扰动或者干扰电感电流和输出电压纹波。
图4 PWM模式到节能模式转换
对于使用DCS-Control拓扑的TPS62130来说,图4表明,相比使用另一种控制拓扑的器件,它的输出电压和电感电流波形都更加平滑。在所有负载电流下,TPS62130输出的电压纹波都更小。更负载时纹波稍有增加;但是,由于器件进入节能模式,这种纹波增加远低于使用另一种拓扑的器件。最后也是最重要的一点是,随着负载增加输出电压下降较明显(在一些有限工作条件下,例如:负载斜升),而使用另一种拓扑的器件则退出节能模式,进入PWM模式。很明显,这是负载或者系统不希望出现的情况,而DCS-Control拓扑可以避免这种情况的出现。
结论
DCS-Control拓扑相比其它控制拓扑有了巨大的改进,它拥有优异的瞬态响应,并可无缝地转换至节能模式。它的单脉冲节能模式具有较低的输出电压纹波,并提高了各种终端设备和系统的性能,包括噪声敏感型应用。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议