首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

《开关电源设计技巧》连载六:并联式开关电源

《开关电源设计技巧》连载六:并联式开关电源

1-4.并联式开关电源
  并联式开关电源 的工作原理比较简单,工作效率很高,因此应用很广泛,特别是在一些小电子产品中,并联式开关电源作为DC/DC升压电源应用最广。例如,很多使用干电池的手提式电器,由于干电池的电压一般只有1.5V或3V,为了提高工作电压,都是使用并联式开关电源把工作电压提高一倍。并联式开关电源的缺点是输入与输出共用一个地,因此,容易产生EMI干扰。

  1-4-1.并联式开关电源的工作原理
  eL = Ldi/dt = Ui —— K接通期间 图1-11-a是并联式开关电源的最简单工作原理图,图1-11-b是并联式开关电源输出电压的波形。图1-11-a中Ui是开关电源的工作电压,L是储 能电感,K是控制开关,R是负载。图1-11-b中Ui是开关电源的输入电压,Uo是开关电源输出的电压,Up是开关电源输出的峰值电压,Ua是开关电源 输出的平均电压。

  当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L的电流开始增加,同时电流在储能电感中也要产生磁场;当控制开关K由接通转为关断的时候,储能电感会产生反电动势,反电动势产生电流的方向与原来电流的方向相同,因此,在负载上会产生很高的电压。

  在Ton期间,控制开关K接通,储能滤波电感L两端的电压eL正好与输入电压Ui相等,即:
  对上式进行积分,可求得流过储能电感L的电流为:
  式中iL为流过储能电感L电流的瞬时值,t为时间变量,i(0)为流过储能电感的初始电流,即:开关K接通前瞬间流过储能电感的电流。一般当占空比D小于或等于0.5时,i(0)= 0,由此可以求得流过储能电感L的最大电流ILm为:
  式中Ton为控制开关K接通的时间。当图1-11-a中的控制开关K由接通状态突然转为关断时,储能电感L会把其存储的能量(磁能)通过反电动势进行释放,储能电感L产生的反电动势为:
  式中负号表示反电动势eL的极性与(1-35)式中的符号相反,即:K接通与关断时电感的反电动势的极性正好相反。对(1-38)式阶微分方程求解得:
  式中C为常数,把初始条件代入上式,就很容易求出C,由于控制开关K由接通状态突然转为关断时,流过储能电感L中的电流iL不能突变,因此,i(Ton+)正好等于流过储能电感L的最大电流ILm ,所以(1-39)式可以写为:
  图1-11-a并联式开关电源输出电压uo等于:
  由(1-41)式可以看出,当t = 0时,即:K关断瞬间,输出电压有最大值:
  当t等于很大时,并联式开关电源输出电压的值将接近输入电压Ui,但这种情况一般不会发生,因为控制开关K的关断时间等不了那么长。

  从(1-42)式可以看出,当并联式开关电源的负载R很大或开路时,输出脉冲电压的幅度将非常高。因此,并联式开关电源经常用于高压脉冲发生电路。

  1-4-2.并联式开关电源输出电压滤波电路

  上面已经知道,当并联式开关电源不带输出电压滤波电路时,输出脉冲电压的幅度将非常高。但在应用中,大多数并联式开关电源输出电压还是经过整流滤波后的直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。

  图1-12是带有整流滤波功能的并联式开关电源工作原理图。图1-12中,Ui是开关电源的工作电压,L是储能电感,eL为电流iL在储能电感两端产生的 反电动势,K是控制开关,R是负载。而图1-13、图1-14、图1-15分别是并联式开关电源控制开关K工作于占空比为0.5、< 0.5、> 0.5时,图1-12电路中各点的电压、电流波形。图图1-13、图1-14、图1-15中Ui是开关电源的输入电压,uo是控制开关K两端的输出电 压,uc是滤波电容两端的输出电压,Up是开关电源输出的峰值电压,Uo是开关电源输出电压(平均值),Ua是开关电源输出的平均电压,iL是流过储能电 感L的电流,iLm是流过储能电感L电流的最大值,Io是流过负载R的电流(平均值)。

  当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L的电流iL开始增加,同时电流在储能电感中也要产生反电动势eL;当控制开关K由 接通转为关断的时候,储能电感也会产生反电动势eL。eL反电动势的方向与开关K关断前的方向相反,但与电流的方向相同,因此,在控制开关K两端的输出电 压uo等于输入电压Ui与反电动势eL之和。
  因此,在Ton期间:
  对上式进行积分,可求得流过储能电感L的电流为:
  (1-44)式中iL为流过储能电感L电流的瞬时值,t为时间变量;i(0)为的初始电流,即:控制开关K接通瞬间之前,流过储能电感L中的电流。当开关电源工作于临界连续电流状态时,i(0) = 0 ,由此可以求得流过储能电感L的最大电流为:
  在开关关断Toff期间,控制开关K关断,储能电感L把电流iLm转化成反电动势,与输入电压Ui串联迭加,通过整流二极管D继续向负载R提供能量,在此期间储能电感L两端的电压eL为:
  式中负号表示反电动势eL的极性与(1-43)式相反,即:K接通与关断时电感的反电动势的极性正好相反。对(1-46)式进行积分得:
  式中i(Ton+)为控制开关K从Ton转换到Toff的瞬间之前流过电感的电流,i(Ton+)也可以写为i(Toff-),即:控制开关K 关断或接通瞬间,之前和之后流过电感L的电流相等。实际上(1-47)式中的i(Ton+)就是(1-45)式中的iLm,因此,(1-9)式可以改写 为:
  当t = Toff时iL达到最小值。其最小值为:
  当开关电源工作于临界连续电流状态时,流过储能电感的初始电流i(0)等于0(参看图1-13),即:(1-49)式中流过储能电感电流的最小值iLX等于0。因此,由(1-45)和(1-49)式,可求得反转式串联开关电源输出电压Uo为:
  一般,并联式开关电源的输出电压Uo都是取自输出电压uo脉冲电压的幅值Up ,经整流滤波以后储能滤波电容C两端的输出电压基本就是Up ,即:
  这里特别指出:(1-50)和(1-51)式的结果,虽然是以开关电源工作于临界连续电流状态的条件求得,但对于开关电源工作于连续电流状态或断流状态同样成立,因为,输出电压Uo只取其峰值电压Up,而不是取其平均值。

  另外,并联式开关电源输出电压uo的平均值Ua与输入电压的大小相等,即:
  由于其输出电压uo的幅值等于输入电压Ui与储能电感L产生反电动势eL之和,因此,并联式开关电源一般都是取其输出电压uo的幅值Up作为输 出(电压幅值的提取方法留待后面详细讨论)。所以,并联式开关电源属于升压型开关电源。虽然并联式开关电源输出电压的幅度比输入电压可以提高,但其输出电 压的平均值Ua与控制开关K的占空比D的大小无关,即:并联式开关电源输出电压的平均值Ua永远等于输入电压Ui 。
返回列表