首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» ADT75型数字温度传感器的原理和应用
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
ADT75型数字温度传感器的原理和应用
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2014-4-26 18:22
|
只看该作者
ADT75型数字温度传感器的原理和应用
温度传感器
,
转换器
,
分辨率
,
测量
1 引言
ADT75是ADI公司推出的数字温度
传感器
,内置1个高度集成的温度传感器,其额定工作温度范围为-55℃~+125℃,能够对温度进行准确测量。其内部还包含1个12位的ADC,用来监测并数字化温度值,其分辨率可达0.0625℃,功耗低,工作电压范围是3 V~5.5 V。若工作电压在3.3 V,其典型电流值为300 μA;在关断模式下,典型电流值仅为3μA。ADT75是一款完善的数字温度传感器,集传感器和模数转换器于一体,可大大简化温度测试系统的设计,提高系统的集成化。
ADT75的主要特点如下:
内含12位A/D转换器;
温度误差最大是±1℃,温度分辨率0.0625℃;
SMBus/I2C兼容接口;
4.2 应用实例
直冷式电冰柜的机件相对较少,设备不容易出故障,而且制冷相对迅速,它是利用冰柜内空气自然对流的方式冷却食品的。其蒸发器常常安装在冰柜上部,蒸发器周围的空气要与蒸发器产生热交换,空气循环往复自然对流,从而达到制冷的目的。在实际使用中,电冰柜的温度应保持在设定值,这就需要采用温度测控系统进行自动调节。温度控制原理是根据蒸发器的温度控制制冷压缩机的启停、使冰柜内的温度保持在设定的温度范围内。
在直冷式电冰柜温度测控系统的设计中,以AT89C51型
单片机
为核心,采用ADT75构成温度控制电路。这种电路硬件设计简单且功耗较低,实用性强。ADT75与AT89C51的硬件接口电路如图4所示。
在电路中,将ADT75的SMBus/I2C串行数据输入/输出端SDA与单片机的P11脚相连,串行时钟输入端SCL由P10脚依次发出高低电平,lO kΩ电阻为漏极开路时的上拉电阻器;ADT75采用比较模式,当OS/ALERT输出设置为低电平时,与其相接的蜂鸣器进行温度超限报警。设计中A2、Al和A0接地,则SMBus/I2C的地址为1001000。系统根据测得的温度值,由单片机内部完成PID运算,然后通过外部温度控制装置控制
制冷压缩机的启停,进行温度的调节,使电冰柜内的温度保持在某个设定的范围内。
5 工作方式
5.1 串行总线的协议操作方式
主设备(如单片机等,见图4)通过设置开始条件启动数据转换,由ADT75串行数据线SDA定义高到低的转换,同时串行时钟线SCL一直为高电平。
ADT75在第9个时钟脉冲之前拉低数据线,等待数据读出或写入。如果R/W位是0,将数据写入ADT75。如果R/W位是1,将从ADT75中读数据。
数据按照9个时钟脉冲序列的顺序传送到串行总线上。在写入模式下,在第10个时钟脉冲到停止状态期间主设备将拉高数据线。在读出模式下,在第9个时钟脉冲之前的低电平期间单片机将拉高数据线。
5.2 ADT75的写入方式
ADl75有2种不同的写入方式。
(1)寄存器写地址
为了从特定的寄存器读数据,地址指针寄存器必须包含该寄存器地址。如果没有包含该地址,必须通过执行单字节写操作将正确的地址写入地址指针寄存器。
(2)向寄存器写数据
配置寄存器是8位,因此只有数据的1个字节能写入这个寄存器。写到配置寄存器的数据字节包括串行总线地址,数据寄存器地址写到地址指针寄存器中,接着数据字节写入所选择的数据寄存器。THYST寄存器和TOS寄存器都是16位,所以可将2个数据字节写入这些寄存器中。
5.3 ADT75的读出方式
对于配置寄存器,以1个单字节数据的方式从ADT75中读数据。对于温度数据寄存器、THYST寄存器和TOS寄存器,以1个双字节数据的方式从ADT75中读数据。从其他寄存器读数据,需要对地址指针寄存器设定相关的寄存器地址。
5.4 超温模式工作方式
ADT75有2种超温模式,即比较模式和中断模式。
(1)比较模式
在比较模式下,当测量温度降至被存放在THYST定值寄存器中的温度限制值以下时,OS/ALERT指针将再次恢复到无效状态。在比较模式下,设置ADT75为关断模式时,无需重新设置OS/ALERT的状态。
(2)中断模式
在中断模式下,只有从ADT75的寄存器读数据时,OS/ALERT引脚才进入无效状态。在被测温度低于存放在THYST定值寄存器中的设定值时,OS/ALERT引脚返回到有效状态。一旦OS/ALERT引脚被重新设詈,只有当温度高于TOS定值寄存器中的设定值时,它才将再次回到有效状态。
5.5 多电路工作方式
在1个主设备的控制下,最多可将8个ADT75连接到一条SMBus/I2C总线上。像所有的SMBus/I2C兼容设备一样,ADl75有1个7位串行地址,这个地址的高4位被设置为1001;低3位由引脚5、引脚6和引脚7设置(即A2、A1和A0),有8种不同的地址选择。如果不需要多个ADT75共同工作,那么A2、Al和A0引脚接地。
6 结束语
在直冷式电冰柜温度测控系统的硬件设计中,ADT75完全能够满足温度采集的要求,使用起来也很方便。由于温度检测电路的外部接口电路简单,串行接口占用单片机口线少,且性能优良,功耗低,可靠性好,所以设计和运行都达到了非常满意的效果
工作温度范围为-55℃~+125℃;
超温指示器;
采用关断模式降低能耗;
在
3.3 V工作电压下的功耗典型值为69μW;
8引脚MSOP和SOIC封装。
2 ADT75的引脚排列及功能
ADT75的引脚排列如图l所示。各个引脚的功能如表l所列。
3 ADT75的工作原理
ADl75的内部结构如图2所示。主要包括温度传感器、∑一△调节器、4个数据寄存器(温度数据寄存器、配置寄存器、THYST定值寄存器和TOS定值寄存器)和1个地址指针寄存器、数字比较器、SM-Bus/I2C串行接口等。其工作过程如下:温度传感器进行温度采集,产生与绝对温度成一定比例的精确电压,并与内部参考电压进行比较,输入精确的数字式调节器中,转换为有效精度为12位的数据。被测量的温度值与限定值比较,如果测量值超限,则OS/ALERT引脚输出超限信息。
ADl75包含5个寄存器:4个数据寄存器和1个地址指针寄存器。配置寄存器是惟一的8位数据寄存器,其余的均是16位。温度数据寄存器是惟一的只读数据寄存器。上电时,地址指针寄存器被设置为Ox00,且指针指向温度数据寄存器,具体描述见表2。
(1)地址指针寄存器
该8位写寄存器存放指向4个数据寄存器之一的1个地址,并选择单步模式。采用单步模式可以减少电能消耗,当单步模式启动时,ADT75立刻进入关断模式。当VDD为3.3V时,电流消耗为3μA;当VDD为5 V时,电流消耗为5.5μA。P0和P1选择被写入或读出数据字节的数据寄存器。PO、Pl和P2通过向这个寄存器写入04H来选择单步模式。该8位寄存器其余位都设置为零。寄存器地址选择见表3。
(2)温度数据寄存器
16位只读寄存器存储由内置温度传感器测得的温度值,以二进制补码的方式存储,以MSB为温度标记位。读寄存器时,先读高8位,后读低8位。
(3)配置寄存器
8位可读/写寄存器为ADT75配置各种模式,如关断、超温中断、单步、SMBus报警使能、OS/ALERT引脚极性和超温错误队列等。
(4)THYST定值寄存器
这个16位读/写寄存器存放2个中断模式下的温度滞后限定值。温度限定值以二进制补码的方式存储,用MSB作为温度标志位。当从这个寄存器读数时,先读高8位MSB,后读低8位LSB。THYST的缺省设置极限温度为+75℃。
(5)TOS定值寄存器
这个16位读/写寄存器以2个中断模式存放超温限定值。温度限定值以二进制补码的方式存储。当从这个寄存器读数时,先读高8位MSB,后读低8位LSB。TOS的缺省设置极限温度为+80℃。
4典型应用
温度是测控系统中主要的被控参数之一。实际应用中,经常需要控制温度使之保持在某一范围内。以往,在实际测控系统中,多采用热敏电阻器或热电偶测量温度。这种温度采集电路有时需要冷端补偿电路,这样就增加了电路的复杂性;而且电路易受干扰,使采集到的数据不准确。用比较
在传统的温度测控系统中,用热电偶或热敏电阻器采集温度,再由前置放大电路将检测到的微小信号转变为ADC可转换的信号,同时经过冷端温度补偿后进行A/D转换,这样才能把模拟温度信号数字化,如图3所示。
这种传统电路的特点是需要的器件多,电路所占空间大,电路易受干扰,调试工作量大,电路集成度差,误差大。
ADT75是一款完善的数字温度传感器,集传感器和模/数转换器于一体。采用ADT75大大简化了温度测试系统的设计,电路集成度高,所占空间小,精度高,大大减少了调试工作量。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议