在 KeyStone 器件上实现高效的 LTE 下行控制信道基带发射
- UID
- 1023166
- 性别
- 男
- 来自
- 燕山大学
|
在 KeyStone 器件上实现高效的 LTE 下行控制信道基带发射
摘要
LTE 下行控制信道分为 PCFICH、PHICH 和 PDCCH 三类,PDCCH 是其中处理复杂度最高的。和下行数据信道 PDSCH 相比,下行控制信道承载的净荷较少、占用的 OFDM 符号数较少、传输模式也仅限于发射分集,理应占用更少的 DSP 核处理资源。但如下两个因素导致用户的实现可能消耗可观的 DSP 核资源:PHICH/PDCCH 的物理资源映射规则比PDSCH 更复杂、颗粒度更小,如果在每个下行子帧按照协议描述实时完成该映射所涉及的所有计算,消耗的核资源将非常可观;BCP 用户手册对 PDCCH 的描述较少,用户不易自行补全所有细节并产生高效方案,导致用户可能退而采用全软方案。另外,小基站应用通常对全系统功耗和成本有很高的要求,需要尽可能降低处理负载。本文给出了将实时计算量降至最低的物理资源映射实现方法,以及用 BCP 实现 PDCCH 比特级处理的方案细节,并提供了全面的硬件实测负载。
1、引言
LTE(Long Term Evolution)是由 3GPP 组织制定的 3G 演进标准,在物理层采用 OFDM和MIMO 技术。LTE 分为 FDD 和 TDD 两种双工模式。目前,LTE-FDD 在 20MHz 频谱带宽下的实际速率大约能达到下行 100Mbps、上行 50Mbps。LTE-TDD(国内通常称为 TD-LTE)的实际速率会随上、下行子帧的配比关系而变化。
[1][2][3][4]是主要的几个 LTE 物理层协议文本。[1]描述了上、下行发射机从星座点调制到基带信号上变频之间的处理步骤,通常称为符号级处理。[2]描述了星座点调制之前的处理步骤,通常称为比特级处理。[3]描述了各种物理层过程。[4]描述了各种物理层测量。
LTE 的上行信道包括用来传输数据和物理层随路控制信令的 PUSCH,专门用来传输物理层控制信令的 PUCCH,以及用于随机接入的 PRACH。下行信道包括用来传输数据的 PDSCH,用来传输各种物理层控制信令的三类控制信道——PCFICH、PHICH 和 PDCCH。本文描述的正是这三类下行控制信道的发射机基带实现。
TI 推出了一系列用于 LTE 基站基带处理的 SoC(System On Chip)。这些 SoC 基于 TI 的KeyStone 架构,该架构目前已演进了两代——KeyStone I 和 KeyStone II。KeyStone I 家族基于40nm 工艺,包括如下基带 SoC 器件型号:
• TCI6616,详细资料参见[5]
• TCI6618,详细资料参见[6]
• TCI6614 和 TCI6612,详细资料参见[7]和[8]
• TMS320C6670,详细资料参见[9]
KeyStone II 家族基于 28nm 工艺,包括如下基带 SoC 器件型号:
• TCI6636K2H,详细资料参见[10]
• TCI6634K2K,详细资料参见[11]
• TCI6638K2K,详细资料参见[12]
• TCI6630K2L,详细资料参见[13]
所有这些器件都具有多模能力,支持 GSM/EDGE、WCDMA、TD-SCDMA、WiMAX、LTE 的单模实现或混模实现。所有这些器件使用的 DSP 核都是 c66x,但个数不同。TCI6614 和 TCI6612带一颗 ARM Cortex A8,TCI6636K2H 和 TCI6638K2K 带 4 颗 ARM Cortex A15,TCI6630K2L带 2 颗 A15,它们除支持物理层以外,还支持高层(层 2,层 3)和传输处理。这些器件也可用于基于 OFDM的无线回传(wireless backhaul),如 LTE relay 站。
本文介绍如何在上述 KeyStone 器件上高效地实现 LTE 下行控制信道的基带发射。注意,TCI6616 不带 BCP 加速器,和 BCP 相关的描述不适合 TCI6616。
下载全文:
在 KeyStone 器件上实现高效的 LTE 下行控制信道基带发射.pdf(1.67 MB, 下载次数: 4)2013-12-31 14:59:34 上传
下载次数: 4
下载积分: 积分 -1 |
|
|
|
|
|