首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

宽频带低噪声放大器设计

宽频带低噪声放大器设计

关键字:低噪声放大器   宽频带   Lange耦合器   平衡式放大器  

采用平衡式电路结构具有以下优点:

(1)由于每只低噪声器件只承担一半功率放大,则放大器输出功率1 dB压缩点将增大3 dB,相应动态范围也增大3 dB,三阶交调约改善6 dB.

(2)端口驻波比得到很大改善,现假设V1,V2的反射系数相等,射频信号fin由耦合器A1端口输入,等分成两部分由A2,A3端口输出,A2端口的反射功率再回到A1端口,总路径相移为-180°;A3端口的反射功率再回到A1端口,总路径相移为-360°,显然两部分反射功率大小相等,相位相反而抵消,因此在A1端口没有反射功率。另外,V1,V2的反射功率在A4端口相叠加,需要加50 Ω匹配负载RL进行吸收。通过耦合器的移相作用,理想情况下端口驻波比恒为1.

(3)提高了放大器工作的稳定性,放大器稳定性的判定条件如下:



式中:△=S11S22-S12S21,K为稳定因子。当同时满足上面三个条件时,放大器绝对稳定。可以证明平衡式放大器的稳定性判别系数K恒大于1. 在图2中,A1端口和B1端口理论上是无反射的,不存在由于信号源或者负载的反射可能造成的自激振荡。尽管单只低噪声器件本身在低频段存在潜在不稳定性,然而只要匹配电路设计良好,A1端口和B1端口之间就是绝对稳定的。这个特性在宽频带接收系统中很重要,特别在天线与放大器匹配时,效果将更加明显。

(4)平衡放大器最低噪声系数和单端放大器基本相同,但在设计匹配电路时,可以完全按照最佳噪声匹配设计,以获得理想最小噪声匹配,不必兼顾驻波比。

在窄频带低噪声放大器中,直流偏压供电引入线的常用结构是λg/4高阻抗微带线,其终端采用扇形线或电容对高频短路,这种结构可用的工作频带最高不过 40%~50%带宽。因此在宽频带低噪声放大器电路中,不可能再用这种形式的偏压引入线,可采用微带线中心跳线型式的偏压引入线,即把跳线焊接在微带中心轴线上,在理想状态下微带线中心正上方空间处没有电场分布。跳线外端焊点对微带边沿的距离至少要大于基片厚度,以保证焊接点在电场之外。由于跳线直径对电感量影响较弱,长度对电感量影响较大,需准确控制。跳线可适当离开基片表面,以减小地板对电感量的影响。另外还需考虑电源的低频滤波和级间低频去耦电容,去耦和旁路电路要足够大,以免出现低频振荡。微带电路中的隔直电容尽量采用高Q值、高稳定温度系数、无谐振及低损耗的宽频带表贴电容,如美国DLI公司 C06系列产品。屏蔽盒体横向宽度应小于最高工作频率的半波长,以避免盒体内部空间产生波导传输效应。微带基片应保持良好接地,固定螺钉的数量要相对多一点,最好螺钉孔的孔壁金属化接地。调试时在盒体的上盖板内表面贴敷相应频段吸波材料,以减小空间耦合所引起的带内增益起伏。

宽频带低噪声放大器还需要进行电磁兼容设计,首先对进入屏蔽盒的电源线使用带馈通滤波器的穿芯电容进行滤波,减小通过电源线所带来的串扰问题;其次需要解决好放大器的端口匹配,确保集成到接收系统时能兼容工作;最后还需对盒体采取电磁屏蔽措施,减小因电磁辐射所带来的干扰问题。在研发阶段加强电磁兼容工作,有利于产品通过相应标准电磁兼容测试。
返回列表