首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
FPGA/CPLD可编程逻辑
» 基于FPGA的通用网络下载器硬件设计
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于FPGA的通用网络下载器硬件设计
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2014-10-29 19:45
|
只看该作者
基于FPGA的通用网络下载器硬件设计
通用
,
网络
,
硬件
网络下载器作为航天计算机地面检测系统的重要组成部分,发挥着重要的作用。文中主要介绍了网络下栽器的总体设计思路,给出了硬件模块的设计原理图。并在PCB设计中,对于LVDS接口、高速总线以及叠层的设计中给出了应用参考,保证了系统硬件的可靠性,且在实际应用中取得了稳定的性能表现。
随着航天技术的发展,地面检测设备作为大系统的重要组成部分,发挥着重要作用。
通用下载器
作为测试指令和测试数据上传下发的重要通道,其可靠性和稳定性备受关注,本文介绍了通用下载器的总体设计思路,给出了原理图和PCB的设计参考,同时在实际测试中验证了该设计的可靠性和稳定性。
1 系统概述
该设备主要完成的功能是将70 Mbit的数据包通过网口分包发送给接收设备,并发送控制数据给接收设备,从而接收来自接收设备的状态数据。
图1 系统原理框图
整个设备主要由ARM芯片和FPGA芯片组成,ARM芯片采用三星2440,FPGA选用Xilinx的Xilinx Spartan6系列FPGA,型号为XC6SLX45F484,将FPGA挂在ARM的RAM接口下,其接口带宽可达133 M/5x4 Byte=106 MByte,通过100 Mbit·s-1以太网网卡与PC上位机通信,通过LVDS接口来完成与下位机的数据和控制信息交互。
FPGA通过一个FIFO接收ARM发送的数据,写使能信号(fifo_wren)由ARM发送的片选信号(nce)和写使能(nwe)控制,当地址信号为0,nce和nwe同时有效时,FIFO被写入数据(16位宽)。FIFO读使能由FIFO空信号(fifo_empt_w)控制,当FIFO有数据写入时,FIFO空信号(fifo_empt_w)由低变高,触发读使能,数据被读出,并经LVDS后进入下位机。
FPGA通过另一个FIFO接收下位机发送的数据,写使能信号(lvds_en_in)由下位机控制,使能信号为高后,下位机提供写时钟(lv_clk_in_ wire),数据(8位宽)被写入FIFO。FIFO读使能(fifo_rden)由ARM发送的片选信号(nce)和写使能信号(noe)控制,当FIFO有数据写入时,FIFO空信号(fifo_r_empt_w)由低变高,ARM检测到此信号后使能nce和noe,并给出读时钟,FIFO数据被读出。
ARM通过100 MBIT网口接收上位机发送的TCP/IP数据包,ARM将其解包使数据内容通过ARM的RAM口发送给FPGA,而FPGA将数据包通过LVDS接口发送给接收设备。
图2 FPGA模块框图
下载器通过LVDS口接收来自接收设备发送的状态数据包并缓存至FIFO中,接收完一帧后给ARM发送中断信号,ARM接收到中断信号通过RAM接口读取FPGA FIFO中的状态数据包并打包成TCP/IP数据包并通过100 Mbit网口发送给上位机。
2 原理图设计
2.1 电源设计
系统采用5 V直流供电,FPGA需要1.2 V的核心电压,2.5 V的VCCAUX电压,3.3 V的bank电压,RAM板与LVDS接口芯片sn551vds31/32均使用3.3 V电压供电,同时保证各个电压等级互不影响,采用5 V直接产生1.2 V,2.5 V和3.3 V电压的方式,其中FPGA的1.2 V核心电压采用开关电源LM2852,保证供电电压的精度,提高了电源效率,2.5 V和3.3 V电流预估较大,为满足系统长时间工作的散热,使用TI的电源模块pth04070。
图3 电源组成图
2.2 网络接口设计
网络接口使用DM9000芯片以及网络接口芯片HR911103A组成,DM9000是一个全集成、功能强、性价比高的快速以太网MAC层控制器。其带有一个通用处理器接口、EEPROM接口、10/100 PHY和16 kB的SRAM(其中13 kB用来接收FIFO,3 kB用来发送FIFO)。电源模块采用单一电源,可分别兼容3.3 V和5 V的IO接口电平。设计采用3.3 V电源供电,保证了系统的稳定性,100 m网口双向通信带宽为50 Mbit·s-1(6 MByte /s)。DM9000和2440连接了16条数据线,1条地址线,唯一地址线用于判断数据线传输的是地址或是数据,所以这16条数据线为数据和地址复用,如图4所示。
图4 DM9000与2440连接图
2.3 LVDS接口设计
LVDS
:Low Voltage Differential Signaling,低电压差分信号。LVDS传输支持速率一般在155 Mbit·s-1以上。LVDS是一种低摆幅的差分信号技术,其使得信号能在差分PCB线对或平衡电缆上以几百Mbit·s-1的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗。 IEEE在两个标准中对LVDS信号进行了定义。ANSI/TIA/EIA-644中,推荐最大速率为655 Mbit·s-1。设计采用了LVDS接口发送芯片sn551vds 31和接收芯片sn55lvds32,其中发送部分采用50 Ω的串联匹配,电阻精度选择为1%,保证终端匹配电阻的精度。
图5 LVDS发送部分原理图
图6 LVDS接收部分原理图
3 PCB设计
系统PCB设计需注意叠层设计,ARM和FPGA间高速总线的设计以及LVDS总线的阻抗匹配及信号约束问题。
根据TI的参考手册,通常的叠层结构为LVDS信号层、电源层(分割成LVDS电平电源和TTL电平电源)、地层(分割成LVDS电平地和TTL电平地)和TTL信号层,如图7所示。
图7 PCB叠层结构图
但在实际设计中,由于叠层的设计,不可能单独列出较多层,对于TTL和LVDS信号的地层也无需进行分割,因其会破坏地层的完整性,在确保完整地的情况下,可对其他地层TTL和LVDS信号分割。总之,在保证地层完整的情况下,使LVDS信号和TTL信号尽量分离,最好是在不同的层进行布线。在本PCB板的设计中,使用6层叠层结构:TOP-GND1-INNER-POWER-GND2-BOTTOM,其中TOP和BOTTOM层走LVDS信号,INNER和GND2走LVTTL信号,这样既保持了信号的分层,也保持了完整的信号回流路径。
LVDS信号频率可达600 MHz以上,所以差分线要求严格等长,差分对内最好不超过10 mil(0.254mm),若频率低于600 MHz,该约束值可适当放宽,但上限不能超过75 mil。不同LVDS对间的布线最大差值不超过200 mil。文中在Cadence16.3的约束设置中,具体设置如下。
图8 PCB叠层设计图
图9 PCB布局布线图
表1 PCB约束规则表
差分阻抗的不匹配会产生反射,有10%的阻抗不匹配便会产生5%的反射,所以需根据不同的情况进行不同的匹配控制。LVDS信号的差分特性阻抗为100 Ω,对于LVDS信号发射端(TX),采用差分对各自串联精度为1%的50 Ω电阻进行匹配,这样既保持了信号传输的功率要求,又满足了阻抗控制的要求。
图10 数据测试图
4 实测结果
下载器性能实测时,将LVDS接口接收和发送部分回环连接,可使用网络调试助手发送55 AA组成的1 032 Byte的数据包,测试下载器的功能。结果如图10所示,从图中可看到,下载器稳定的收发数据。
5 结束语
设计的网络下载器将FPGA在信号处理中的优势和ARM芯片在网络通信中的优势相结合,在PCB设计中对于LVDS接口的阻抗、高速线时序以及叠层进行了设计,较好地保证了系统硬件的可靠性,并在实际使用中达到了良好的效果。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
DSP技术
嵌入式技术
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议