首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
MCU 单片机技术
» 新型隔离式ADC架构利用分流电阻进行三相电能计量
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
新型隔离式ADC架构利用分流电阻进行三相电能计量
发短消息
加为好友
我是MT
当前离线
UID
1023166
帖子
6651
精华
0
积分
3328
阅读权限
90
来自
燕山大学
在线时间
230 小时
注册时间
2013-12-19
最后登录
2016-1-5
论坛元老
UID
1023166
性别
男
来自
燕山大学
1
#
打印
字体大小:
t
T
我是MT
发表于 2014-10-30 09:03
|
只看该作者
新型隔离式ADC架构利用分流电阻进行三相电能计量
互感器
,
隔离
作者:
ADI
公司系统工程师Petre Minciunescu
内容提要
传统三相电表使用
电流
互感器(CT)检测相电流和零线电流。CT的优势之一是能够在数百伏的电力线与电表地(通常连接到零线)之间提供固有的电隔离。CT可以实现良好的线性度;通过调整匝数比和负载
电阻
,可以灵活地测量各种类型的电流。然而,CT用于电表时也有一些缺点。首先,外部直流磁场可能会使CT的磁芯饱和。现在,非常强大的稀土直流磁体很容易为普通民众所获得并应用于窃电。其次,电源
电子
设备也能使CT饱和,例如用于分布式太阳能发电的直连
逆变器
,它在线路上产生直流电流。制造商可以通过屏蔽和使用直流兼容CT来克服这两种影响,但这会增加成本。有人说,无论是何种CT,都可以找到一个永磁体来干扰它。第三,CT会引入一个与线电流频率相关的测量相位延迟。如果应用仅关注线电流的基波成分,那么补偿此延迟相对容易。然而,测量谐波成分日益变得重要,而要补偿基波和所有谐波的总延迟则非常困难。
其它电流
传感器
在三相电表应用中使用较少,包括罗氏线圈等di/dt传感器或
霍尔效应
传感器。虽然这些传感器在某些应用中具有优势,但也存在特殊的困难。例如,罗氏线圈具有出色的线性度,可以检测非常高的电流,但难以制造,而且难以实现良好的抗扰度,不适合精确的低电流测量。在防窃电方面,罗氏线圈也容易受交流磁场干扰。霍尔效应传感器要求对温度失调进行主动补偿,而且本身很容易受磁场影响。
分流电阻与三相电能计量
近年来,在成本、磁场抗扰度和尺寸等因素的推动下,分流电阻在单相电表中的使用迅速增加。许多情况下,单相电表以线
电压
为基准,因而无需额外的隔离。在三相电表中,必须在各分流电阻与电表内核之间提供一个隔离栅,这是严重的挑战。热量也是一个问题,迫使分流电阻一般只能用于最大电流不超过120 A的电表。
我们先考虑一个三相系统的A相及其负载。假设利用分流电阻来检测相电流(图1)。
图1. 利用分流电阻检测相电流时的A相电流和电压检测
这恰好是一个单相电表配置:分流电阻位于电力线上,一个分压器检测相至零线电压。分流电阻和分压器上的电压由一个模数转换器(
ADC
)检测。地为分流电阻与分压器共用的极点。单相电表大部分用于住宅,其最大电流一般低于120 A。这一限制加上低成本要求,使得分流电阻成为单相电能计量中使用最广泛的电流传感器。
所有三相都复制这一方案,各ADC有其自己的地(图2)。
图2. 利用分流电阻检测相电流时的三相电流和电压检测
管理所有活动的微控制器(
MCU
)与零线处于相同的电位,为了在ADC与MCU之间进行通信,必须隔离数据通道。这样,每个ADC都有其自己的隔离电源(图3)。
图3. 具有分流电阻、独立电源和隔离通信的三相电表
这种电表架构已在使用:双通道ADC利用光耦合器或芯片级
变压器
,跨越隔离栅将信息串行传输到MCU。隔离电源利用独立器件或采用芯片级变压器的隔离DC-DC转换器来构建。
理想情况下,所有相电流和电压都应同步采样,以便利用瞬时值进行全面的三相分析。但是,各相的ADC读数完全独立,因为不存在ADC同步。这是这种架构的第一个局限。使用电流互感器或罗氏线圈的电表则不存在这种问题,因为它们可以使用一个计量
模拟前端
(AFE)来同时读取所有相电流和电压。
这种架构的另一个问题是高器件数:一个MCU、三个ADC、三个多通道数据隔离器以及四个电源。使用CT的电表不存在这个问题,因为
电路
板通常具有一个MCU、一个计量AFE和一个电源。
那么,如何构建一款具有分流电阻的优势,器件数对于这种架构而言最少(即一个MCU、一个电源和三个ADC),并且能对所有相电流和电压同步采样的电表呢?
隔离式ADC架构
答案是构建一种集成至少两个ADC、一个隔离式DC-DC转换器和数据隔离器,并能使属于不同芯片的ADC同步采样数据的芯片(图4)。MCU的电源VDD也为此芯片供电。采用芯片级变压器技术的隔离式DC-DC转换器为ADC的第一级提供隔离电源。一个ADC检测分流电阻上的电压,另一个ADC利用分压器检测相至零线电压。由分流电阻极点之一所确定的地就是芯片隔离侧的地。ADC为sigma-delta型,仅第一级放在芯片的隔离侧。第一级输出的位流经过芯片级变压器,后者是隔离数据通信通道的一部分。芯片的非隔离侧收到位流,滤波后将其变为24位字,然后通过SPI串行端口提供给外部。
芯片级变压器技术对这种新型ADC架构的贡献最大。与光耦合器相比,ADI公司获得专利的iCoupler数字隔离器更可靠、尺寸更小、功耗更低、通信速度更快、时序精度更佳。但这还不够。隔离式sigma-delta调制器上市已久,采用光耦合器或芯片级变压器。芯片级变压器技术的最重要贡献是伴随isoPower隔离式DC-DC转换器,它可以与ADC、数字模块、隔离数据通道一同集成到一个表贴薄型封装中。
图4. 新型ADC架构包括双通道ADC、数据隔离和一个隔离式DC-DC转换器
芯片级变压器的核心是空气,因此iCoupler数字隔离器和isoPower隔离式DC-DC转换器根本不受永磁体的影响,使得电表这一侧完全不受直流磁场干扰。这种变压器对交流磁场同样具有高抗扰度。线圈面积非常小,要影响isoPower线圈运行,必须产生一个10 kHz、2.8 T的磁场。换言之,为了影响芯片级变压器的行为,必须让69 kA的10 kHz电流通过一根导线,并让该导线与芯片相隔5 mm。
信息利用极高频
PWM
脉冲传输到隔离栅另一侧。由此产生的高频电流会在电路板中传播,引起边沿和偶极子辐射。隔离式DC-DC转换器的负载仅由sigma-delta ADC的第一级构成,其幅度是已知的。因此,线圈是针对已知负载进行设计,从而可以降低一般与DC-DC转换器相关的辐射,并且无需四层电路板。使用这种架构的IC时,电表制造商可以使用两层电路板,并通过所需的CISPR 22 Class B标准。
为使与MCU的接口尽可能简单,芯片的数字模块对来自第一级的位流进行滤波,并通过简单的从机SPI串行端口提供24位ADC输出。电表每一相都有一个隔离式ADC,因此获得一致ADC输出的挑战仍未解决。如果采用同一时钟工作,则所有相上的ADC第一级可以在同一时刻采样。如果图4中的CLKIN信号产生自MCU,则这很容易实现。另一个方案是使用一个晶振为一个芯片产生时钟,然后利用缓冲CLKOUT信号为所有其它隔离式ADC提供时钟。控制所有隔离式ADC以在同一时刻产生ADC输出。现在,电表就能利用分流电阻检测电流,执行精确、全面的三相分析。
图5显示一款采用三个隔离式ADC的三相电表。该电表仅有一个电源为MCU和隔离式ADC供电。MCU利用SPI接口从各IC读取ADC输出。
图5. 采用新型隔离式ADC的三相电表
上面的说明假设利用外部MCU执行计量计算。对于希望解决方案包括计量计算的电表制造商,可以将隔离式ADC耦合到一个IC以执行所有计量计算,如图6所示。
图6. 采用新型隔离式ADC和计量IC的三相电表
基于此架构的新产品
此架构已被ADI公司的一系列新产品采用:ADE7913、ADE7912、ADE7933和ADE7932。图7显示了ADE7913的框图。它与图4非常相似,但有一个额外ADC通道用于检测与
温度传感器
复用的辅助电压。该辅助电压可以是断路器上的电压,温度传感器可用于校正分流电阻的温度变化。ADE7912是一个变体,无辅助电压测量功能,但有温度传感器。
ADE7933和ADE7932将SPI接口替换为位流接口,其余特性分别与ADE7913和ADE7912相同。它们就是图6所示的隔离式ADC。图中的计量IC已通过ADE7978实现。
图7. 基于此架构的新型ADE7913隔离式ADC
结束语
本文说明了一种新型隔离式ADC架构。它包含一个isoPower隔离式DC-DC转换器,利用MCU电源为隔离栅另一侧的多通道sigma delta ADC第一级供电。ADC输出的位流经过iCoupler数据隔离器,由数字模块接收。此模块对其进行滤波,产生24位ADC输出,可利用简单的SPI接口读取。一个ADC可以测量经过一个分流电阻的电流,第二个ADC可以利用分压器测量相至零线电压,第三个ADC可以测量辅助电压或温度传感器。它支持三相电表使用分流电阻,确保完全不受直流和交流磁场干扰,执行电流检测时不会产生任何相移,同时可降低系统总成本。小尺寸解决方案确保电路板非常小,只需安装非常少的器件。集成式isoPower芯片级变压器针对已知ADC负载而设计,辐射降至最低,并通过测试,利用两层电路板即可达到CISPR 22 Class B标准。
当然,使用分流电阻的电流检测并不局限于电能计量应用,电能质量监控、太阳能逆变器、过程监控和保护设备均可受益于这种新型ADC架构。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议