关键字:混合信号示波器 模拟信号 数字信号 MSO WaveScan
许多基于微控制器的系统都有模拟和数字信号。即使看起来是完全数字的系统也不完全是数字的,因为存在振铃和串扰等模拟效应。因此,对系统中的信号通常需要同时持有模拟和数字的视角。这正是混合信号示波器(MSO)可以帮助到你的地方。
混合信号示波器同时具有示波器的功能和逻辑分析仪的部分功能。最常见的混合信号示波器配置有4个模拟通道和16个数字通道,它们最适合用于嵌入式微处理器板的查错。
图1所示的处理器板框图包含诸如电源、时钟、模数转换器(ADC)输入和数模转换器(DAC)输出等模拟信号,也有并行和串行的数字信号。并行数字信号包括CPU和GPIO接口的数字和地址线。以太网、SATA、PCIe、SPI、I2C和UART等接口则是高速和低速串行数据信号。混合信号示波器可以让你在模拟或数字域中同时观察这些信号。两个域中的显示都是时间上同步的,有助于发现问题。通过从模拟、数字或两者结合的触发还有助于诊断。这些采集资源还有一整套测量与分析工具进行补充。不管是哪个域中的数据,这些工具都可以处理。另外,可以方便地使用搜索功能定位串行或并行数字化数据图案。
图1:包含模拟(绿色)、数字(红色)和串行数据(蓝色)信号的嵌入式微处理器板例子。混合信号示波器提供了单台仪器就能测量和查错所有这些类型信号的方案。
比较模拟和数字
数字示波器中的模拟波形是将采集到的信号表示为一系列采样点。这些采样点是以示波器的采样速率获取的,并用示波器中的模数转换器(ADC)位数设定的幅度分辨率进行了数字化。现代高频示波器具有8位(256个等级)到12位(4096个等级)的ADC分辨率。
混合信号示波器中的数字轨迹代表一个比特,是以数字采样率采样的。幅度基本上从0到1变化,依据的是比预设的逻辑阈值(许多混合信号示波器为多种系列逻辑器件提供预设的逻辑电平)高还是低,它们代表了数字输入的状态。图2显示了模拟轨迹(底部)和数字轨迹(顶部)的比较。
图2:数字轨迹(顶部)和模拟波形的比较。数字轨迹幅度用1或0表示,判断依据是数字输入端的电压是高于还是低于用户设定的逻辑阈值。模拟轨迹被分解为4096个(12位)幅度等级中的任意一个。
模拟轨迹可以显示随时间发生的电压微小变化。你可以看到诸如脉冲上冲和振铃等现象。在C1描述块中可见的光标幅度读取功能可以读到低至mV的幅度。(在数字1描述块中的)数字轨迹光标读取功能则报告0和1的幅度。记住,数字轨迹只显示数字线的状态,只有0和1两个值。
当显示多根数字线时,你通常可以选择用一根线单独观察、捆绑成总线观察或两种观察同时进行,如图3所示。在图3中,8根数字线(D0到D7)以总线形式被同时显示在画面上(底部轨迹),它用十六进制计数方式显示了所有数字线的总值。注意,D7是最高位(MSB),D0是最低位(LSB)。
图3:以单线和总线形式显示的D0至D7多根数字线.总线形式显示了十六进制计数的所有8根线总数。D0是最低位,D7是最高位。典型的测量工具包括将数字线作为源的光标和定时参数,如图中所示。
你可以将示波器的参数测量工具应用于任何一种信号类型,但对数字轨迹的测量被限制为与时间相关的测量,如周期、宽度、占空比和延时。这些参数与更为常见的模拟波形参数一样可以作为趋势(按先后顺序绘制参数值)、跟踪(绘制时间上与源轨迹同步的参数值)和直方图分析工具的依据。图3显示了基于所示数字线的8个参数(P1-P8)。
|