首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

好噪声?坏噪声?教你认识ADC输入噪声(上)

好噪声?坏噪声?教你认识ADC输入噪声(上)

引言
  所有模数转换器(ADC)都有一定数量的折合到输入端的噪声——它被看作一种与无噪声ADC的输入端串联的噪声源模型。不能把折合到输入端的噪声与量化噪声相混淆,量化噪声仅在ADC处理随时间变化的信号时有意义。在大多数情况下,输入噪声越小越好;但是在有些情况下,输入噪声实际上对提高分辨率是有帮助的。如果现在你觉得这似乎没有道理,那么请阅读本文以弄明白有些噪声怎样可以是好噪声。
  折合到输入端的噪声(编码变迁噪声)
  实际的ADC在许多方面与理想的ADC有偏差。折合到输入端的噪声(又称作有效输入噪声)无疑是偏离理想值,它对ADC总传递函数的影响如图1所示。当模拟输入电压增加时,“理想的”ADC(如图1a所示)保持一个恒定的输出编码直到达到一个变迁区,在那一点上输出编码立刻跳变到下一个量化值,并且一直保持到达到下一个变迁区域。理论上理想的ADC具有零编码变迁噪声,并且变迁区域的宽度等于零。实际的ADC有一定数量的编码变迁噪声,因而具有有限的变迁区域宽度。图1b示出编码变迁噪声宽度约为一个最低有效位(LSB)峰峰值(P-P)噪声的情况。

  


  图1. 编码变迁噪声(折合到输入端的噪声)及其对ADC传递函数的影响


  从内部结构来看,所有ADC电路都会由于电阻器噪声和“kT/C”噪声而产生一定数量的有效值(RMS)噪声。这种噪声,甚至对于直流输入信号也会出现,认为是造成编码变迁噪声的原因,现在通常称作折合到输入端的噪声。折合到输入端的噪声最常用的表征方法是检查大量输出采样的直方图,同时ADC的输入端保持在一个恒定的直流值。最高速或最高分辨率ADC的输出是编码的分布,通常集中在直流输入标称值的周围(见图2)。
  为了测量折合到输入端的噪声的数量,要将ADC的输入端接地或连接到一个深度去耦的电压源,然后采集大量的输出采样并且将其绘制为直方图(如果 ADC的输入标称值为0 V,则称之为输入接地直方图)。由于该噪声是近似的高斯(Gaussian)分布,所以该直方图的标准偏差σ可以计算,它相当于RMS输入噪声。欲获知如何从直方图数据计算σ值的详细介绍,请见深入阅读资料6。通常的做法是用LSB 的RMS来表示这种RMS噪声,相当于折合成ADC满度输入范围的RMS电压。如果模拟输入范围以数字量或个数来表示,那么输入值(例如,σ)可以用 LSB的数量来表示。

  


  图2.折合到输入端的噪声对ADC的输入接地直方图的影响,该ADC具有很小的DNL


  尽管ADC内在的微分线性误差(DNL)会造成与理想的高斯分布的偏差(例如,图2中有一些DNL是很明显的),但应当至少近似于高斯分布。如果有显著的DNL偏差,那么应对于几个不同的DC输入电压进行平均计算σ值。如果编码分布明显是非高斯分布的,例如有大而明显的波峰或波谷,这就表明对ADC 设计得不好,或很可能是印制电路板(PCB)布线不好,接地技术差,或电源去耦不正确(见图3)。出现麻烦的另一个迹象是,当ADC的直流输入超过ADC 的输入电压范围时使高斯分布的宽度剧烈变化。

  


  图3. 对ADC设计的不好以及其PCB布线、接地或去耦不好时的输入接地直方图无噪声(无闪烁)码分辨率


  ADC的无噪声码分辨率是指超过这个位(bit)数它就不能清楚分辨个别编码的分辨率。这种限制是由于上文所述与所有ADC相关的有效输入噪声(或折合到输入端的噪声),通常表示为一个以LSB rms为单位的RMS值。RMS噪声乘以因数6.6 ,转换为有用的P-P噪声(可表示编码的实际不确定性),表示为LSB P-P。

  


  图4. AD77301Σ-ΔADC的无噪声码分辨率


  由于一个N bit ADC的总转换编码数是2N LSB,因此总的无噪声码数量等于:
  
  无噪声编码数量可通过计算以2为底的对数转换为无噪声(二进制)码分辨率,用下式表示:
  
  无噪声码分辨率指标一般与高分辨率Σ-ΔADC有关,它通常是采样速率、数字滤波器带宽和可编程增益放大器(PGA)增益(因此关系到输入范围)的函数。图4示出典型的无噪声码分辨率表,取自Σ-Δ ADC AD7730的产品技术资料。
  应当注意的是,对于50 Hz输出数据速率和610 mV输入范围的Σ-ΔADC,其无噪声码分辨率是16.5 bit(80,000个无噪声编码)。在这些条件下的建立时间为460 ms,从而使得这种ADC非常适合用于精密电子秤应用。这种数据可以从许多适合精密测量应用的高分辨率Σ-ΔADC的产品技术资料中获得。
  满度范围与RMS输入噪声(而不是P-P噪声)的比率有时用于计算分辨率。在这种情况下,采用术语有效分辨率。应当注意,在相同条件下,有效分辨率比无噪声码分辨率大log2(6.6),约为2.7 bit。
  
  
  一些制造商喜欢采用有效分辨率而不是无噪声码分辨率,因为那样bit位数较高——用户应当仔细检查产品技术资料以确认实际上采用的是哪种分辨率定义。
  数字平均提高分辨率和减少噪声
  通过数字平均可以减少折合到输入端的噪声的影响。考虑一个16 bit ADC,它以100 kSPS采样速率工作具有15 bit 无噪声码分辨率。对一个同样信号的每次输出采样做两次测量结果平均,使有效采样速率减少到50 kSPS,信噪比(SNR)提高3 dB并且无噪声码分辨率提高到15.5 bit。如果对每次输出采样做四次测量平均,采样速率减少到25 kSPS,SNR提高6 dB并且无噪声码分辨率提高到16 bit。
  我们甚至可以进一步对每次输出采样做16 次测量的平均,输出采样速率减少到6.25 kSPS,SNR再增加6 dB,无噪声码分辨率增加到17bit。为了明显提高“分辨率”,必须实行多次精密平均。
  平均过程也有助于平滑ADC传递函数的DNL误差。这可以通过ADC在量化编码k上有失码的简单情况来举例说明。尽管编码k由于大的DNL误差而失去,但两个相邻编码k–1和k+1的平均值仍等于k。
  因此这种方法以牺牲总体输出采样速率和额外数字硬件为代价有效地用来增加ADC的动态范围。还应当注意的是,平均过程不会修正ADC内在的积分线性误差(INL)。
  现在,考虑一个具有极低折合到输入端的噪声的ADC的情况,无论进行多少采样,其直方图都示出一个单个编码。对于这个ADC,数字平均会起什么作用? 答案很简单——没有作用! 无论对多少采样进行平均,结果都一样。但是,一旦有足够大的噪声施加到输入信号,就会有多于一个的编码出现在直方图中,平均方法又开始起作用。因而很有意思,有些少量的噪声是好噪声(至少对于平均方法而言);但是,出现在输入端的噪声越多,就需要越多的平均以达到同样的分辨率。

返回列表