首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

IPC内嵌TMS320F206电表校验的接口实现

IPC内嵌TMS320F206电表校验的接口实现

摘 要:本文叙述在进行电量测量装置的高精度校验中,采用数字信号处理器TMS320F206及其与工业控制PC机(IPC)的ISA总线、双口SRAM、高精度A/D转换器等接口电路的实现方法。

在进行常规电量测量装置的校验中,作为校验装置,一定要对电压、电流的幅值、频率、相位等进行高精度测量,在校验装置中采用TI公司DSP器件TMS320F206控制A/D转换、数据采集和数字滤波处理,并把滤波处理后的数据传送给微机进行数据的进一步处理,实现了高精度电表校验的要求。

测量单元的组成及其功能
测量单元是作为系统的高精度"标准表",要完成对交/直流电压、电流的多个电量测量,测量的精度小于0.05级,测量单元采取插卡式设计,直接插入IPC(工业控制微机)的ISA总线中使用。本单元结构框图如图1所示。



其中:A/D转换器采用BB公司的ADS7805,这是16-Bit,转换频率可达100KHz,的高精度转换器,芯片有28脚双排直插式或贴片式封装,转换结果16位并行输出,启动转换和读取上次转换的结果可以同时进行,用它完成变换后的电压、电流信号的A/D转换;双口RAM采用CY7133-25,它是一个双边均16位数据位的2KBRAM,两边可以分别对片内的存储单元进行存取,在电路中分别受DSP和IPC的控制,以实现IPC和TMS320F206之间的数据交换;过零比较用LM339,实现对交流v、I的过零检测,用于获取计算频率、相位差等数据的信号。

DSP采用的是TI公司的16-bit定点DSP TMS320F206,运算速度40MIPS,是一种低功耗器件,采用了改进的哈佛结构,有1条程序总线和3条数据总线,流水线操作,有高度并行32-bit算术逻辑单元、16*16-bit并行硬件乘法器、片内存储器、片内外设和高度专业化的指令集,从而使该芯片速度高、操作灵活。片内资源还有:内部时钟发生器,可以对外接时钟源进行*1、*2、*4和/2来产生CPU时钟;片内有RAM4.5K,Flash32K,能够适合于许多工程应用,特别是32K Flash作为程序存储器,给系统的设计和程序的调试带来很大方便;3个外部中断INT1、INT2、INT;1个同步串口和一个异步串口;1个软件可编程定时器;JTAG扫描仿真接口(IEEE标准),用来实现在线仿真测试;具有4个独立可编程I/O脚(I/O0、I/O1、I/O2、I/O3),1个输出脚XF和1个输入脚/BIO。

由于DSP的取指和执行能完全重叠运行,再加上多级流水线操作、专用的硬件乘法器、特殊的DSP指令和快速的指令周期等结构特点,使得其数字处理速度大大提高,这也为DSP和外部电路和器件的接口提出了一些新的要求和问题,在设计DSP应用系统时必须要认真考虑。

TMS320F206和ISA总线的接口
考虑到系统数据处理的适时性和相对独立性,TMS320F206和IPC交换数据是通过双口SRAM实现,接口电路如图2所示。

这部分电路接口,主要需要考虑解决以下问题:
(1) DSP对双口SRAM的读/写控制
TMS320F206的地址线A0-A10分别和CY7133的A0L-A10L直接相连,F206的16位数据线分别和CY7133的IO L0-10直接相连。由于采用了快速双口SRAM,无需考虑为DSP加入等待状态,R//WE直接接RAM的R/W LU和R/W LL进行数据读写控制,CY7133的片选信号/CEL由/DS和A15组合产生,由图可见TMS320F206对CY7133的寻址



范围为8000H-87FFH。测量单元用了3片TMS320F206组成3路相同的测量电路对三相电路分别测量(图2中只>   (2) IPC对双口SRAM的读/写控制;

IPC通过ISA总线对双口SRAM的读/写控制,直接用存储器寻址的方法进行读写。 ISA总线有A0-A19根地址线,可以直接寻址00000-FFFFFH,其中C8000-EFFFFH保留给用户,可以作为存储器的扩充设计使用。本电路IPC对双口SRAM的读/写控制中,地址线、数据线、存储器读(/OE)和写(/MEMW)控制线的连接如图2中所示,其译码电路译码得到的3组地址选择信号,D8000-D87FFH、D88000-D8FFFH、D9000-D97FFH分别用来作为3路双口RAM的片选信号。
(3) 避免两边对同一单元同时进行读/写操作
因为DSP和IPC对双口SRAM的读/写是随机的,在使用中有可能两边同时对SRAM的同一单元进行读写操作,从而引起读写数据的错误。CY7133两边有/BUSY信号,当两边器件同时访问同一存储单元时,信号/BUSY有效,表示有一个访问冲突发生。为了能够处理好访问冲突,如图3,/BUSYL信号接TMS320F206的READY引脚,当READY为低,表示IPC已经在对CY7133的同一单元读或写,TMS320F206应稍作延时再对该单元操作;三路CY7133的/BUSYR信号经过一个与门接到ISA总线的10号中断IR10,任一路/BUSYR有效,即向IPC发出中断,表示DSP已经在对SRAM的同一单元读或写,IPC应稍作延时再对该单元操作,这样就实现了TMS320F206和IPC进行正常的双口存储空间访问。需要注意,/BUSY引脚必须接上拉电阻才能正常工作(图中从略)。



DSP和被测量信号的连接
系统的被测量信号主要是电压、电流的幅值、频率和相位。频率和相位测量通过比较器接入TMS320F206的中断引脚,再配合内部的定时器即可以测量和处理,这里不再多述。幅值的测量就是要对已经按精度要求和按比例变换减小后的电压电流信号进行精确测量。为了发挥DSP的特点,对被测信号进行高速采样和滤波处理,用2片ADS7805同时分别对变换后的电压电流信号采样和A/D转换,然后读取并进行数字滤波处理,A/D转换及测量电路如图3所示。ADS7805转换结果以补码表示,最高位为符号,15位数据,对数据的实际分辨率可达到1/32767。由于对A/D转换进行控制和读取是属于I/O操作,所以用TMS320F206的I/O控制信号/IS和地址线组合译码,电路中,当TMS320F206对地址7XXX进行操作时,会同时启动2路ADS7805进行A/D转换;当对地址2XXX进行输入,将读入被测电 压v的转换结果;当对地址4XXX进行输入,将读入被测电流i的转换结果。

高灵敏度演示电表



教学中常用的大型演示电表,其灵敏度低,缺少低电压、小电流挡。在需要精确测量低电压、小电流的实验中,由于存在较大的误差,难以达到令人满意的实验效果。本电路使用运放集成电路来提高灵敏度,从而弥补了以上不足。本电表可应用于以下实验:闭合电路的欧姆定律;晶体三极管的电流分配和放大作用;通过测量,找到金属导线的电阻与导线长度、横截面积及材料的关系;电路端电压与外电路电阻的关系;电池的串联和并联;伏安法测电阻;用电流表和电压表测电池的电动势和电阻;单根导线切割磁力线产生感生电流。高灵敏度演示电表电路原理如图所示。

输出电表平自动控制的LC振荡器

R8C/2G电表MCU电路板电路图

电能计量IC配合闪存单片机实现灵活创新的电表设计
近年来,市场上固定功能的电表集成电路(IC)不断增多,这使得在电表设计方面保持竞争力变得越来越困难。许多模拟前端(AFE)电能计量IC都采用△-∑ ADC,并通过基于ROM的固定功能状态机来计算功率输出。这些IC不能进行修改,也不能用于电能测量之外的其他功能。

数字计算模块(例如有功功率、视在功率和RMS电流与电压)的功能都是固定的,以固定频率运行,具有固定的输出精度。虽然这些器件可以良好地执行它们的固定功能,但这种方案对于设计师来说不够灵活。

  图1a 典型的基于ROM的电表设计

  图1b 消除电能计量IC和闪存MCU之间的界线
以前,IC制造商只提供基于ROM的电能计量IC作为执行这些功能的开源解决方案;现在,他们以△-∑可配置闪存设计的形式提供解决方案。本文介绍了一个完整的电表设计示例,使用大约7 KB的程序字来实现完整的三相电表IC。该设计由中断驱动,仅使用50%的中断处理时间(系统的电源频率为60 Hz,每个周期进行128次采样)。在130μs的时间窗中,大约65μs的时间用于全部三相的计算,包括失调电压、增益和相电压的校准,以及LSB的调整。高精度电表设计的功率输出寄存器最高需要48位,所以在低成本的8位单片机(MCU)上执行这种数学计算并非轻而易举。这种闪存方案具有很大的灵活性,相比基于ROM的电表IC具有很多优点,本文将对此进行介绍。

基于ROM的电表设计需要依靠外部存储器进行电表校准,并智能加载状态机,这是一种成本较高的两阶段方案。信号流的第三个阶段必须将校准常量装入固定功能的电能计量IC中。通过将基于ROM的AFE中的计算功能与基于闪存的中央MCU相结合,可以省去其中的一个阶段。电表校准算法和常量可以全部包含在一个阶段中,这有助于减少IC数量和降低系统成本。

电表精度要求可靠的模拟性能
在做出关于计算和电表校准的设计决定之前,设计师必须确定模拟设计是可靠的。系统的模拟和ADC性能最终会限制电表的整体精度。在设计趋势的推动下,分流电流和信号越来越小,所以ADC噪声较低、分辨率较高的电能计量IC会更符合市场的需求。要开发符合IEC标准的电表(包括0.5和0.1级电表),低噪声、串扰可忽略、具有优良线性度的16位双通道ADC会是一个坚实的起点。

Microchip Technology的MCP3909电能计量IC是一款△-∑器件,特别针对符合以上条件的电能计量应用而设计,它包含有灵活的数字模块和通信通路。该IC的两个板载16位模数转换器的信噪失真比(SINAD)为82 dB,支持远超出IEC要求的动态范围测量。该IC的板载PGA(增益可达32 V/V)支持如下面所示的信号大小和测量误差精度。此外,器件还允许设计师控制ADC和乘法器输出,以及滤波器输入。

  图2 灵活的通信支持高精度、模块化的电表设计

该器件可以与MCU配合使用,也可以用作独立的计量解决方案。在某些情况下,电表设计并不完全需要采用双芯片方案。在这些情况下,保留电表IC中的功率计算功能就足够了。执行有功功率计算,并产生脉冲输出来驱动机械计数器,具有这种固定功能的DSP模块在行业中已取得了很大的成功。目前,这种脉冲输出计算模块已经成为了业界的标准,MCP3909 IC中正包含了这种模块。数以百万计的电表采用了这种单芯片方案,该方案只需要单点校准。在分立式和基于MCU的电表中都可以使用此类设计,这种灵活性可以极大地帮助电表制造商进行设备认证和测试。

此外,使单个电表IC适用于多种电表设计可以让电表设计师和制造商受益,并最终让寻求可靠解决方案的电力公司受益。MCP3909器件的双功能使它非常灵活,可适用于一系列广泛的电表设计。

双功能电能计量IC
这种设计概念通过双功能引脚实现,双功能引脚使设计师可以直接访问△-∑ ADC和乘法器输出。这种方案为电能计量IC和闪存MCU之间的交互带来很大的灵活性。由于可以直接访问电压、电流和功率ADC输出,数字计算功能现在可以转移到闪存MCU中,闪存MCU可以同时用作计算引擎和中央处理器。

设计示例:三相电表设计
图3显示了一个三相电表参考设计示例,它使用了Microchip的MCP3909和PIC18F系列高端8位单片机(MCP3909-3PH18F-RD1)。该示例将可直接访问的△-∑电能计量IC与低成本闪存电表计算引擎相结合,从而节省元件成本并简化电表校准与设计。配置寄存器、功率与电能寄存器,以及RMS电流与电压寄存器位于闪存MCU上。所有寄存器都可以通过串行接口访问,就如它们在标准的基于ROM的电表计量IC中一样。

  图3 闪存中的电能输出和校准寄存器

该设计的独特之处在于,进行电表校准之后,可串行访问的寄存器中包含以精确功率单位表示的数值。寄存器的十进制值表示功率量的十进制值。对于功率,可用的寄存器位宽最高为48位;对于电能,可用的寄存器位宽最高为64位。例如,名称以“W”结尾的寄存器对应于所测量的瓦特值。以“VA”结尾的寄存器包含给定相的伏安值——“I”表示所测量的RMS电流,“V”表示所测量的RMS电压。

LSB校正这一概念让设计师可以通过自动校准软件设置寄存器的分辨率。寄存器分别表示功率(千瓦)、电压(伏特)、电流(安培)和电能(千瓦时)的LSB量。例如,给定输出寄存器中的数值为1234时,表示1234瓦特或1.234千瓦。与其他计量器系统、模块或输出显示器(例如LCD)接口时,可以极大地简化电表固件的设计。

小数点位置(即功率量的分辨率)由在该设计的校准软件的电表设计部分输入的值决定。在通过软件自动对电表进行校准的步骤中,将会计算出正确的LSB校正因数,以确保最低有效位表示给定量的最低有效数字。

软件中的电表设计对话框允许用户输入具体的电表参数。对于任意给定的电表生产批次,可以在生产时进行自定义,为RMS或有功功率计算增大ADC量程。其他电表常量(例如空载阈值限制)也可以在生产电表时通过软件/闪存接口简便地更改。


USB电表数据读取/校准
对于高级电表设计,电表所需的校正因数不仅在生产时在电表外部计算,而且还通过软件和校准设备在校准期间进行计算。通过USB与电表校准软件进行通信更符合实际需求,因为现在的许多PC已经没有曾经普遍使用的RS-232串行端口。RS-232仅支持每次与连接到总线上的一个设备进行通信。进行电表校准时,通常要控制10至50个电表的校准电压和电流。使用RS-232时,通过单个控制校准的PC无法与多个电表进行通信。

电表的USB监视与校准软件具有一些优于传统串行与并行软件解决方案的优点。这些优点包括:连接能力提高、通信带宽更宽,以及可为多个电表供电。此外,使用USB还可以快速地从多个电表收集数据。

图4显示的是利用Microchip公司免费的USB电表软件通过前面介绍的闪存PIC18F和MCP3909电能计量IC示例进行电表校准和数据读取。对于两种方案,软件的接口均支持RS-232/485和USB。

  图4 MCP3909三相电表校准软件

该开源USB软件具有多项优势功能,包括能够存储和读取电表校准状态。闪存MCU中包含一些校准状态寄存器,软件使用这些寄存器来标记一些特定功率量是否已校准。相校准状态使用$图标标记,如图4所示。这种校准方式只能用于基于闪存的电表计算引擎,不能由基于ROM的电表IC执行。此外,系统还会跟踪哪相被选择为标准相,用于在校准期间进行相间增益匹配。

为了帮助防止电表篡改行为,采用该方案时需要考虑的一个重要方面就是代码安全性和加密。除了防止篡改外,可能还需要保护电表设计的知识产权(IP)。针对特定客户需求进行修改之后,如果电表计算引擎中包含电表制造商希望针对最终客户保护的IP,有一些选项可用于实现代码安全性。

有一种安全性级别可以对存储器算法进行锁定,禁止通过串行端口读取一些存储区的内容。对MCU存储器的一些区域设置读写锁定,可以防止其他代码部分(例如RS-485或USB部分)访问受保护的区域,例如保存校准和校正因数的那些区域。此外,还提供了标准的加密算法,例如高级加密标准(AES)和微型加密算法2(XTEA)。

安全的协作式公用仪表设计
保护协作式公用事业计量系统设计中的知识产权也是一个常见的挑战,因为对电表计算引擎进行自定义会在设计中产生额外的IP。在公用仪表中,计量器设计事务所、软件IP供应商、传感器模块和OEM可能各自具有自己的IP,而最终的计量器中可能包含二至三种嵌入式MCU,每种具有不同的计量功能和特定于不同公司的IP。使用多种具有不同IP的器件会增加最终客户和公用事业公司的成本。

可以将多个IP区域整合到单个器件中,同时对各个代码区域进行独立保护,并将解决方案集成到单个16位MCU或数字信号控制器(DSC)中。这种在单个器件上整合IP的协作式方案可以保护各方的IP,并且可以较低的成本提供最终的产品。

电表设计的新选择
今天,可供选择的闪存MCU和模拟产品非常广泛,这为电表设计提供了许多令人激动的新途径。近年来,出现了只有6个引脚的小尺寸闪存MCU,单价低于0.40美元,这为低成本的单相电表校准提供了新的可能性。此外,采用模块化的AFE计算模块,还可以简便地开发更高端的16位和32位电表;这些模块协同工作,实现简化的校准技术和更快速的电表生产。采用△-∑ ADC技术的高精度、灵活的AFE,配合闪存MCU的智能,为创新性的单相和三相电表设计开辟了新的途径。
奥地利微电子单相电表IC支持80段LCD显示驱动
奥地利微电子公司日前推出新型单相电表IC AS8267,为片上数据和程序存储器提供最可靠的数据安全保持,且能在极端温度范围内工作。

采用特色封装的AS8267电表IC包含一个最先进的精密前端,可用于精确测量各种计量参数。嵌入逻辑和微控制器易于根据客户的要求进行灵活定制。AS8267芯片集成了所有的防窃电措施,并可对各种窃电行为进行监控。内嵌功能部件,如LCD驱动器、温度传感器和实时时钟,从而使外部元件数降到最少。

AS8267芯片支持多达80段的LCD显示驱动,并集成了一个8位MCU、32kB的片上闪存和9个可编程的多用途输入/输出端口。AS8267芯片的两个通用异步接收/发送器(UART)有助于实现外部通信。片上输出可编程能量LED脉冲,以实现快速自动数字校准。一个额外串行接口支持外部可选 EEPROM连接的同时,还提供了一个片上温度传感器和实时时钟。

奥地利微电子公司工业和医疗部市场总监Matjaz Novak表示:“我们用于AS8267芯片的嵌入式闪存技术可满足电表应用程序和数据保存的最高要求。此外,我们存储器中内容的安全特性在为电表应用提供高可靠性硬件平台的同时,可帮助客户充分保护他们的软件投资。”

奥地利微电子公司计量产品部应用经理Dave Simpson表示:“AS8267芯片为有功电能、电网电压和电流等所有测量参数提供卓越而精准的测量性能,在业内处于领先水平。精确的测量精度使所有测量方法都有一贯的可重复性。”

AS8267器件的推出使奥地利微电子LCD显示电表系统级芯片产品系列又增加了一个新成员。该系列的产品还有AS8268、AS8228和AS8218。

AS8267芯片采用6?引脚LQFP封装,现已供货,且与目前的AS8268、AS8218和AS8228 IC产品引脚兼容。



ST新推适合低端电表应用的前端测量IC系列
意法半导体近日推出一个新系列的电表IC,新IC集成了实现一个完整的电表系统所需的全部核心电路,不再需要任何其它的外部有源器件。STPM1x系列产品可以测量有源电能,把结果以脉冲频率的形式输出,并支持快速数字校准功能,是功能完整、成本低廉的电表芯片,特别适用于低端电表应用。

新的STPM1x系列完全符合单相0.5级静态电表的技术规格,具有简单而快捷的数字校准功能,在整个电流量程内,只在一个负载点即可完成校准操作,与通过电阻网络进行的硬件校准相比,新产品的制造成本被大幅度降低。新的混合信号IC可以有效测量电力线路系统中的有源功率,它采用了各种电流传感器,如分流器、电流互感器和Rogowsky线圈。

STPM1x的模拟模块包括信号调节前置放大器、模数转换器和低压降稳压器电源。

在芯片的数字电路部分,硬连线的数字信号处理器(DSP)采用创新的无纹波的计算方法来计算被消耗的有源电能,从而大幅度减少了电表的校准时间。此外,通过互补性脉冲输出还可以得到有源功率,脉冲输出使功率测量变得更容易,同时在低端电表应用中可以直接驱动步进电机计数器。

通过一个串口可以对芯片进行配置和校准,这个端口利用一次性可编程存储器(OTP)永久保存校准参数,防止以后有任何数据篡改事件发生。

前端测量IC系列,特别适合低端电表应用"
the king of nerds
返回列表