首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
电源与功率管理
» 封装寄生电感是否会影响MOSFET性能?
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
封装寄生电感是否会影响MOSFET性能?
发短消息
加为好友
520503
当前离线
UID
872339
帖子
13270
精华
0
积分
6635
阅读权限
90
在线时间
361 小时
注册时间
2012-3-2
最后登录
2016-3-10
论坛元老
UID
872339
1
#
打印
字体大小:
t
T
520503
发表于 2014-12-19 20:45
|
只看该作者
封装寄生电感是否会影响MOSFET性能?
影响
,
电路板
,
开发
,
开关
I.引言
高效率已成为开关电源(SMPS)设计的必需要求。为了达成这一要求,越来越多许多
功率半导体
研究人员开发了快速开关器件,举例来说,降低器件的寄生电容,并实现低导通电阻,以降低开关损耗和导通损耗。这些快速开关器件容易触发开关瞬态过冲。这对SMPS设计中电路板布局带来了困难,并且容易引起了栅极信号振荡。为了克服开关瞬态过冲,设计人员通常采取的做法是借助缓冲电路提高栅极电阻阻值,以减慢器件开关速度,抑制过冲,但这会造成相对较高的开关损耗。对于采用标准通孔封装的快速开关器件,总是存在效率与易用性的折衷问题。
在处理电路板布局和器件封装产生的
寄生电感
时,快速开关器件接通和关断控制是关键问题。 特别是,封装源极寄生电感是是器件控制的关键因素。在本文中,英飞凌提出了一种用于快速开关超结MOSFET的最新推出的TO247 4引脚器件封装解决方案。这个解决方案将源极连接分为两个电流路径;一个用于实现功率连接,另一个用于实现驱动器连接。这样一来,器件就能保持快的开关速度,同时又不必牺牲接通和关断控制能力。
本文编排如下:在第二节,将利用硬开关
升压转换器
来分析并开发一个简单的高频模型,该模型采用了具备MOSFET寄生参数和电路板寄生参数的标准通孔封装传统的TO247(即:电源电流路径和驱动电流路径是相同的)。第三节将对最新推出的TO247 4引脚封装做详尽的电路分析,以表明TO247 4引脚封装在开关速度、效率和驱动能力等方面的有效性。最后,第四节分析了实验波形和效率测量,以验证最新推出的TO247 4引脚封装的性能。
II.分析升压转换器中采用传统的TO247封装的MOSFET
A.开关瞬态下的MOSFET操作时序
要分析快速开关MOSFET中的
封装寄生电感
产生的影响,必须十分理解MOSFET工作处理。硬开关关断通常出现在硬开关拓扑和零电压开关拓扑中。本小节将逐步分析MOSFET关断瞬态操作。图1所示为硬开关关断瞬态下,理想MOSFET的工作波形和工作顺序。
图1 升压转换器中的MOSFET的典型关断瞬态波形
当驱动器发出关断信号后,即开始阶段1 [t=t1]操作,栅极与源极之间的MOSFET电容器Cgs将开始放电。此时,MOSFET阻断特性保持不变。这个t1阶段被称为延时,它表征着MOSFET的响应时间。当MOSFET栅源电压Vgs达到栅极平台电压Vgs(Miller)时,这个阶段便告结束。
当Vgs与Vgs(Miller) 相等之后,将进入阶段2 [t=t2],在此期间,其电压水平将保持不变。负载电流将对漏极与源极之间的MOSFET电容器Cds进行充电,以重建空间电荷区。这个阶段将一直持续至MOSFET漏源电压Vds达到电路输出电压时为止。
阶段3 [t=t3] ,Cgs将继续放电。漏电流Id和Vgs开始线性下降,阻断MOSFET导通通道。当Vgs 与栅极阈值电压Vgs(th)相等,并且Id变为零时,这个阶段即结束。这个阶段结束后,MOSFET将完全关断。
阶段4 [t=t4] ,栅极驱动对Cgs持续放电,直至Vgs电压水平变为零。
IV.实验验证
A.实验测试波形
将升压PFC转换器用作测量平台,进行评估。传统的TO247封装MOSFET和最新推出的TO247 4引脚封装MOSFET将被用作平台主用开关器件,以验证最新推出的TO247 4引脚封装MOSFET优于传统的TO247封装的开关性能和栅极控制能力。
图4所示为传统的TO247封装(上)和最新推出的TO247 4引脚封装(下)的硬开关关断波形对比。根据测得波形,从Vds(t)(蓝色波形)到Id(t) (黄色波形)的TO247 4引脚封装MOSFET的穿过时间,比最新推出的TO247封装MOSFET缩短了约40%。Vds 与ID 的重叠越少,意味着开关损耗越低。较之于传统的TO247封装,最新推出的TO247 4引脚封装MOSFET的振荡幅度Vgs (t) (紫色波形)也降低了30%。因此,最新推出的TO247 4引脚封装提供了更加可靠的开关控制。
图4. TO247封装MOSFET(上)和TO247 4引脚封装MOSFET(下)的MOSFET关断瞬态波形。试验条件:Ext. Rg=5 Ω,12 V栅极驱动电压、试验器件IPZ65R019C7
最新推出的TO247 4引脚封装MOSFET切换时间,比传统的TO247封装短。得益于开关损耗降低,最新推出的TO247 4引脚封装MOSFET实现了更高效率,如图5所示。在输入电压为110 Vac的满负荷试验条件下,相比于传统的TO247封装的试验结果,最新推出的TO247 4引脚封装MOSFET的效率提高了0.2%。在高电压情况下,即当输入电压为220 Vac时,也实现了与之一致的效率提升。
图5. 在110 Vac 输入电压条件下,TO247 4引脚封装MOSFET与TO247封装MOSFET的PFC效率对比。测试条件:Ext. Rg=5 Ω,开关频率=100 kHz,测试器件:具备相同硅芯片的IPW65R019C7(TO247)和IPZ65R019C7(TO247 4引脚)
V.结语
本文分析了快速开关MOSFET封装寄生电感对开关性能的影响。封装源电感是决定切换时间的关键参数,后者与开关速度和开关可控性密切相关。英飞凌最新推出的TO247 4引脚封装MOSFET能最大限度地减少传统的TO247封装寄生电感造成的不利影响,实现更高系统效率。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议