首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
模拟电路
» 两轮平衡车的姿态角度测量:基于互补滤波器
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
两轮平衡车的姿态角度测量:基于互补滤波器
发短消息
加为好友
520503
当前离线
UID
872339
帖子
13270
精华
0
积分
6635
阅读权限
90
在线时间
361 小时
注册时间
2012-3-2
最后登录
2016-3-10
论坛元老
UID
872339
1
#
打印
字体大小:
t
T
520503
发表于 2015-2-13 23:41
|
只看该作者
两轮平衡车的姿态角度测量:基于互补滤波器
平衡
,
滤波器
,
测量
两轮平衡车
具有广阔的应用前景, 使其成为了当前研究的热点。其中,两轮平衡车的
姿态角度测量
是研究的关键问题之一。姿态角度测量是两轮平衡车运行和控制实现的前提。姿态角度测量的精度和速度,将直接影响两轮平衡车控制算法的稳定性和可靠性。随着惯性测量元件的微型化与
微处理器
运算能力的提高,两轮平衡车姿态测量普遍采用低成本的惯性测量组合元件(Inertial Measurement Uint,IMU),结合微处理器数据处理算法实现高精度的姿态测量。IMU 主要由低成本的
MEMS
陀螺仪和三轴加速度计组成。MEMS 陀螺仪有自主性好、功耗低、机电性能好易集成等优点。但是,MEMS 陀螺仪具有温度漂移特性,其测量误差会随着时间的累加而不断的累积,从而影响测量精度。加速度计会受到平衡车振动的影响,混叠额外的振动量干扰。所以单一的
传感器
测量难以得到精确的姿态角度。需采用多传感器信号融合的方法,来获得准确的姿态角度量。
多传感器数据的融合方法有神经网络、小波分析、卡尔曼滤波等姿态解算算法,但这些方法建立稳定可靠的更新方程通常具有较高的阶数,且计算量大,不适合于低运算能力系统的实时计算。相比以上方法,
互补滤波
算法对处理器运算速度要求不高,且简单可靠。本文基于互补滤波算法,设计了两轮平衡车姿态角度测量电路与数据处理算法,设计了信号滤波预处理,利用互补滤波算法融合两种传感器数据,分析了互补滤波算法中关键参数的计算方法。并将此方法应用于两轮平衡车角度测量,进行了验证性试验,给出了实验测试数据。
1 姿态角度测量原理
沿平衡车3 个机体轴即直立时正前、正右、正上方向定义为x、y、z 三轴参考坐标系。所受的3 轴重力加速度分量定义为gx、gy、gz。假设两轮平衡车处于静止或匀速运 行的状态。得到重力加速度与平衡车姿态角度的关系如式1所示:
其中,Cbn为惯性坐标系到载体坐标系的变换矩阵;θ 为俯仰角;φ为横滚角;g 为重力加速度; 可以通过测量重力加速度分量gx、gy、gz,计算出平衡车俯仰角θ1和横滚角φ1估计值
若使用陀螺仪来测量平衡车姿态角度,设陀螺仪测量载体相对惯性坐标系的x、y、z 三轴旋转角速度分别为ωx、ωy、 ωz。并定义0 时刻平衡车直立静止。可得到俯仰角θ2和横滚角φ2估计值与ωx、ωy之间的关系如式3 所示:
在实际应用中,由于平衡车机体运行时存在运动加速度、测量噪声, 以及陀螺仪本身存在漂移等因素的影响, 式(2)、(3)姿态角度测量方法失效,为了准确的获得姿态角度。可将以上的2 种姿态角度测量得到的姿态角度信息相融合。
2 惯性组合测量电路
该系统中惯性组合测量电路如图1 所示, 由加速度计MMA7361、陀螺仪ENC-03 及放大电路组成。实现对加速度计和陀螺仪测得信号进行放大。加速度计和陀螺仪信号经放大,分别由angle 引脚和gyro 引脚输出后,信号通过AD 采样转换为数字信号,传递到微控制器中,再利用互补滤波算法,得到姿态角度。
图1 惯性组合角度测量电路图
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议