首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
DSP技术
» 采用DSP和STM32的双核智能电液伺服控制器
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
采用DSP和STM32的双核智能电液伺服控制器
发短消息
加为好友
520503
当前离线
UID
872339
帖子
13270
精华
0
积分
6635
阅读权限
90
在线时间
361 小时
注册时间
2012-3-2
最后登录
2016-3-10
论坛元老
UID
872339
1
#
打印
字体大小:
t
T
520503
发表于 2015-3-10 21:38
|
只看该作者
采用DSP和STM32的双核智能电液伺服控制器
控制器
,
伺服
,
智能
伺服控制系统大部分都采用传统的硬件结构,控制算法比较固定,而且也无法实现不同工况下的高性能控制算法,难以满足现代工业的需求。现阶段迫切需要研制一种智能型、具有高可靠性、控制性能更加优秀的电液伺服系统。基于DSP与STM32的智能型
伺服控制器
具有软硬件结合程度更加紧密、系统的智能化程度更高、可实现多种控制策略的优势。本系统从实际的需求出发,结合精确数字PID控制算法和Fuzzy控制算法自身的优势,组合成Fuzzy-PID控制算法,根据偏差的大小范围选择合适的控制算法进行调节。
本设计将两款工控芯片——TI公司的浮点型DSP TMS320F28335和ST公司的ARM7升级版STM32F103RET6引入智能电液伺服系统,设计了基于DSP与STM32的智能型伺服控制器,使电液控制技术进一步朝向数字化、集成化、智能化、轻量化、高精度、高可靠性、节能降耗的方向持续发展。
1 硬件设计
1.1 硬件总体结构
其硬件结构如图1所示。
1.2 I/U变换电路
由于指令输入信号和反馈信号都是4~20 mA直流信号,所以需要将其转换成STM32F103RET6的A/D转换器可接受的0~3 V直流电压信号。图2为I/U变换电路。
电阻R25输入一个“-2.5 V”参考电压,由“虚断”可知,经过R25和R26电阻分压后,在“1”点的电压为:
所以U1=-0.1 V。由“虚短”可知,“2”点的电压U2=U1=-0.1 V,所以当4~20 mA电流信号输入后,“3”点的电压U3=I×(R14+R16)-0.1,即U3=0.025×I-0.1。当I=4 mA时,U3=0 V;当I=20 mA时,U3=0.4 V,这样就完成了4~20 mA到0~0.4 V的电流/电压转换。后级运放为同相比例运算放大器,放大倍数:
所以输出电压公式为UO=7.5×U3。当输入为4 mA时,UO=0 V;当输入为20 mA时,UO=7.5×0.4=3 V。经过两级运放,完成了从4~20 mA电流信号向0~3 V电压信号的转换。
1.3 U/I变换电路
STM32F103RET6的D/A转换输出为0~3 V的直流电压信号,要想驱动伺服阀,必须通过U/I变换,转变成4~20 mA直流电流信号,如图3所示。
由图3可知,I0≈I3由“虚断”和“虚短”可知:
其中,0≤V1≤3V,由于电阻阻值有误差,为了保证电路能从0~3 V转换为4~20 mA,特意将电阻R44设置为200 Ω的滑动变阻器,用以弥补电阻阻值误差带来的影响。
2 软件设计
2.1 STM32主程序设计
待系统上电初始化完成后,首先执行故障自诊断程序,当STM32F103RET6(以下简称STM32)无故障且外围硬件电路无故障时,启动STM32内部A/D转换器,对指令信号(或本地给定信号)与反馈信号进行采样和模数转换,并将采集的数据通过SPI通信传给DSP进行运算。DSP再将计算结果通过SPI传给STM32,STM32经过内部的D/A变换输出模拟量来控制电液伺服阀,并可以通过触摸屏查询各种参数、输出控制量的曲线图,判断计算偏差的大小。若偏差为0,则退出程序;反之,则继续执行以上过程,直至偏差为0。系统工作的流程如图4所示。
控制器的软件设计采用模块化编程方案,软件由STM32部分和DSP部分组成,STM32部分包括了系统初始化子程序、A/D转换子程序、D/A转换子程序、系统自检报警子程序、SPI通信子程序。DSP部分包括控制算法子程序、以太网通信子程序、EEPROM存储子程序、SPI数据通信子程序、系统初始化设置子程序。
2.2 DSP主程序设计
DSP部分的主程序主要的功能是:与STM32进行SPI通信,将STM32采集的数据通过控制算法计算出控制输出量和以太网通信。在主函数中,首先禁用DSP内部看门狗,初始化DSP时钟;其次,初始化DSP各个内部模块,然后禁用全局中断,初始化中断向量表,根据需求对中断进行配置;待所有初始化完成后再打开全局中断,最后程序进入无限循环等待SPI和以太网中断。主程序流程图如图5所示。
3 系统测试
本系统设计了参数在线设定、故障自检测等功能,在系统整体的测试过程中,液晶显示出故障的部分。经过各项测试,测试结果表明该控制器运行可靠,具备良好的稳态性能和动态品质,能够获得精密且实时的控制效果。表1为伺服控制器瞬时测试结果。
其测试条件为:本地控制工作模式下,输入信号均为4~20 mA,且伺服阀为正作用,位置反馈为正作用。根据伺服阀电流的变化趋势来确认控制算法是否正确,在整个测试过程中,当指令信号小于反馈信号时。伺服阀电流呈现减小变化的趋势;当指令信号大于反馈信号时,伺服阀电流呈现增大变化的趋势。根据变化趋势得出控制算法符合实际的调节规律。本伺服控制器的线性拟合度可达到0.078%,能完全满足线性拟合度优于0.1%的要求,完全达到了预期设定的目标。
结语
本课题根据电液伺服控制系统的性能要求,研制了一款采用32位浮点DSP芯片TMS320F28335和Cortex—M3为内核的ARM芯片STM32F103RE T6为控制核心的智能伺服控制器,并且通过系统测试证明了本控制器的稳定性、可靠性及实用性。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议