首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

NI平台提升WLAN测试速度

NI平台提升WLAN测试速度

权衡要素3 – 复合测量与单一测量
  缩短WLAN测量时间的第三个要素,就是执行复合式的测量操作来取代个别设定的测量操作。通过WLAN分析工具包,只需要执行单一的复合式测量操作就可以进行所有的时域测量(时域功率、EVM和频率偏移)。由于复合测量可以从单一脉冲中计算得到多项测量结果,因此其效率高于顺序执行的独立测量操作。
  当使用复合式测量操作测量功率时,必须考虑两种方式,如果使用WLAN分析工具包,即可以通过完整的脉冲序列来测量RF功率,也可以通过部分脉冲序列来进行门控测量。表4展示了各个测量操作所需要的测量时间。该表格中的所有结果,都是100次测量各自进行了单次平均之后的总的平均值。在些范例中,我们使用了16组OFDM符号来完成每次802.11a/g EVM测量操作。并针对20~120 μs的部分脉冲序列进行门控功率测量。

  


  表4. 进行802.11a/g复合测量与单一测量所需要的时间


  从表4可知,针对802.11a/g的单一脉冲序列执行如EVM与功率等重要的复合测量时,其总测量时间与多个单一测量的时间总和相比将可以有大幅地降低。表4所示的复合测量包含了EVM,门控功率(部分脉冲)与TX功率(完整脉冲)测量。
  如果对802.11b信号进行相应的复合式测量,也可以省下差不多的时间。针对该信号类型,重要的测量可以包括EVM、功率、功率上升时间与功率下降时间。同样的,由于复合式测量可以让使用者同步地进行多个测量操作,因此是一种加速装置测量速度的方法。表5即是以NI PXIe-8106双核控制器运行LabVIEW 8.6.1进行测量的结果。这里通过对1000个片段进行EVM测量,并且以100 μs的时间间隔来计算门控功率。

  


  表5. 进行802.11b复合测量与单一测量所需要的时间对比


  同样的,表5说明了并行测量操作可以达到较高的效率。如果分别执行11Mbps CCK脉冲、EVM、TXP和上升/下降测量操作,将总共需要126ms的测量时间,但如果是平等测量,则仅需要64ms的总测量时间。
  权衡要素4 – 测量频跨与测量时间
  执行WLAN频谱测量所需要注意的第四个权衡要素,就是测量的频跨与测量时间之间的关系。IEEE 802.11标准为802.11a/g信号定义了60MHz的频域遮罩,为802.11b定义了66MHz的频域遮罩;并且还有几个实例可用于用户自定制,举例来说,测试工程师可能需要100MHz的频跨来测试调制信号频率范围以外的混叠信号。更进一步来说,工程师也可能对802.11b信号只使用44MHz的频跨以缩短测量时间。
  不管是数字IF分析仪还是传统的扫频分析仪来说,测量频宽越大,需要的测量时间越长。使用传统的扫频分析仪,测量的时间与频跨会是线性的关系。在这样的条件下,如果将一个100kHz的RBW滤波器在所需要的频跨范围中进行扫频,测量的时间将与测量的频跨成线性关系。如果使用矢量信号分析仪(如NI PXI-5661和NI PXIe-5663),那么其结果将会有所不同。与矢量信号分析仪的实时带宽相比,频谱测量操作的实时带宽较为狭小,因此不需要另外的RF前端来对信号进行重调以完成测量。
  例如,NI PXIe-5663 RF矢量信号分析仪如果提供50MHz的实时带宽,那么使用者就不需要花费大量的时间来重新调整仪器的前端,也可以执行低于50MHz频跨的频谱测量操作。图5即是使用NI PXIe-8106控制器执行频谱测量操作,根据频跨范围的不同而在3~12.5ms之间变化。

  


  图5. 运行于NI PXIe-8106控制器的WLAN 802.11g/g测试的频域遮罩对频跨的关系(NIRFSA 2.2或更新版本)


  与之相对的,如果频跨是在50MHz与100MHz之间,就必须要对分析仪的RF前端重新进行一次调整。因此,加上CPU对信号进行额外处理所需要的时间分析仪前面重调操作将会增加全局测量时间。图5展示了一个66MHz频跨(完全的802.11a/g频域遮罩)的信号需要近12.5ms的时间来测量。在这样的条件下,附加时间将会取决于本地晶振的稳定时间而不是信号处理的时间。
  请注意,与该EVM测量相似的是:操作者必须考虑测量时间与平均次数之间的关系。由于平均操作可以合理地降低本底噪声,所以一般工程师都会在测量的时候执行几次平均。在图6中,可以观察到单次平均与100次平均下的频谱遮罩测量(66MHz频跨)结果的区别。

  


  图6 对频谱模板测量操作来说,适当的平均可以降低测量的不确定性


  因此,测量频跨与平均次数,都将影响频谱模板测量的整体速度,一般来说,只有在RF前端必须进行重调时,测量频跨对测量时间的影响会比较大,而从另一方面来看,平均次数帽与测量的时间有线性的关系。
  例如,考虑对处理器资源要求较高的802.11b的频谱模板测量(44MHz频域范围),图7展示了测量时间与平均次数之间的线性关系。

  图7 在不同CPU条件下频谱模板测量时间与平均次数的关系


  更进一步来说,CPU测量时间与CPU的特性有相当大的关系。在这个实例中,CPU的运算能力越强,例如使用NI PXIe-8106控制器,就能够越快地完成这个测试。
  权衡要素5 - CPU对测量时间的影响
  第五个会大幅影响WLAN信号测量的权衡要素是测量系统所使用的CPU。CPU是软件定义的PXI测量系统的核心基本部件之一。CPU的性能也往往是影响测量性能最直接的因素,对RF的测量更是如此。幸运的是,现在的用户可以通过目前的多核CPU配合WLAN分析工具包来获得极高的工业级的测量结果。
  虽然实际系统的性能仍然受到很多其它因素的影响(如存储介质容量的大小或其它应用背景的影响),但在自动化测试系统中,CPU性能与测量时间的关系密不可分。表6就展示了以PXI控制器为基础的比较结果。

  


  表6 多款PXI Express 控制器的重要参数对比


  以上几个CPU的性能都会对整体的测量速度造成影响,但其中影响最大的,包括处理核的数量、CPU时钟频率、前端总线、L2缓存的大小和系统内存的大小。
  图8展示的是脉冲数据传输率与测量时间的关系。还有CPU对EVM测量时间的影响,如图所示,NI PXIe-8106双核控制器在所有的数据传输率中,都可以取得较快的EVM测量时间。

  


  图8 较快的CPU可以缩短测量的时间


  虽然PXIe-8106在所有的数据传输率下都可以取得最快的速度,但是请注意,它并非本次实验使用的所有控制器中时钟频率最高的。虽然NI PXIe-8130所使用的AMD CPU的时钟比NI PXIe-8106的时钟频率要高,但由于其L2缓存大小较小,因此影响了其运算的速度。NI PXIe-8106所使用的Intel Core 2Duo T700 CPU,是这次实验中L2缓存最大(4MB)的CPU。
  结论
  如上面的表格与图示所展示的,有很多的因素都可能影响WLAN信号的整体测量时间。因此,如果想要将测量系统的速度发挥到极致,就必须要仔细地考虑相关的配置,包括平均次数、所要测量的符号数与测量频跨(频谱)。更进一步地看,虽然操作者可以调整多个测量配置来缩短测量的时间,却也需要同时考虑可能关联影响的可重复性、精度或者是测量的完整性,进而达到结果的平衡。因此,如果要不牺牲测量的品质又要能够提升测试的数据传输量,最简单的办法莫过于选择更好的CPU。而软件定义的PXI架构的测试系统的重要优势之一就是可以让操作者可以根据自己的需要选择CPU。除了可以大幅提升测量速度之外,PXI系统也可以高度的自定制。所以,操作者可以获得未来升级处理器的灵活性以达到更快的测量速度。
返回列表