首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
MCU 单片机技术
»
ARM
» 基于STM32的大扭矩永磁同步电机驱动系统
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于STM32的大扭矩永磁同步电机驱动系统
发短消息
加为好友
苹果也疯狂
当前离线
UID
852722
帖子
10369
精华
0
积分
5185
阅读权限
90
在线时间
277 小时
注册时间
2011-8-30
最后登录
2016-7-18
论坛元老
UID
852722
1
#
打印
字体大小:
t
T
苹果也疯狂
发表于 2015-6-30 16:26
|
只看该作者
基于STM32的大扭矩永磁同步电机驱动系统
同步电机
,
传动机构
,
电子技术
,
交流电机
,
控制系统
0 引言
大扭矩永磁同步电机直接驱动由于去掉了复杂的机械传动机构,从而消除了机械结构带来的效率低、维护频繁、噪声与转动惯量大等不利因素,具有效率高、振动与噪声小、精度高、响应快、使用维修方便等一系列突出优点[1]。近年来,随着电力电子技术、永磁材料、电机设计与制造技术、传感技术、控制理论等的发展,大扭矩永磁同步电机在数控机床、矿山机械、港口机械等高性能系统中得到了越来越广泛的应用[2 - 3]。
交流电机控制系统广泛采用单片机、DSP、FPGA为控制系统核心。STM32 是一种基于ARM 公司Cortex-M3 内核的新型32 位闪存微控制器,采用了高性能、高代码密度的Thumb-2 指令集和紧耦合嵌套向量中断控制器,拥有丰富的外围接口,具有高性能、低成本、低功耗等优点[4]。本文针对一种港口机械用大扭矩永磁同步电机驱动系统,采用STM32 + IPM 硬件构架设计了高性能、低成本的控制系统。
1 大扭矩永磁同步电机矢量控制原理
忽略电机的铁心饱和、涡流及磁滞损耗,不计漏磁通的影响,大扭矩永磁同步电机的电压、磁链、转矩方程分别为式中,
ψd、ψq、ud、uq、id、iq、Ld、Lq分别为永磁同步电机d、q 轴的磁链、电压、电流和电感,Rs为电枢绕组电阻,ωr为转子角速度,ψf为永磁体产生的与转子交链的磁链,Te为电磁转矩,Pn为电机磁极对数
。
由式( 3) ,控制id = 0 使定子电流矢量位于q轴,此时转矩Te和iq呈线性关系,实现电磁转矩的解耦控制。如图1 所示,本文的永磁同步电机采用速度、电流双闭环控制,图中ω* 为给定速度指令,ω 为速度反馈,将速度误差输入速度控制器,输出交轴电流指令i*q,通过电流PI 控制器和坐标变换,再利用SVPWM 产生IPM 开关信号。
图1 大扭矩永磁同步电机控制原理框图
2 系统设计
图2 所示为该系统结构框图, 本文采用STM32F103VCH6 主控芯片、PM800HSA120 智能功率模块为系统核心,硬件控制系统主要有: 处理器模块; 检测模块,主要包括霍尔电流检测、旋转变压器接口电路; 主电路,主要由整流、软启动、滤波、制动电路,以及PM800HSA120 及其驱动、保护、吸收电路组成; 开关电源及其他模块,主要由多路DC /DC 转换、直流母线电压保护、温度检测保护等电路组成。
图2 大扭矩永磁同步电机硬件系统结构框图
2. 1 硬件系统设计
2. 1. 1 处理器模块
STM32F103VCH6 是基于ARM 公司Cortex-M3 内核的新型32 位闪存微控制器,拥有三级流水线和分支预测功能,最高工作频率为72 MHz,可以满足本系统处理速度和实时性的需求,有两个高性能的12位的16 通道A/D 转换器、两个16 位专为电机驱动设计的内嵌死区控制6-PWM 定时器,片上还集成有SPI、USB 2. 0 等丰富的外设和接口[5]。如图2 所示,本系统充分利用了STM32 的片上资源,利用它来接收、处理电流、位置等反馈信号,接收、处理各种出错保护信号,执行电机控制算法等。
2. 1. 2 检测模块
检测模块主要包括电流检测电路和位置检测电路。其中电流检测采用莱姆电流型霍尔传感器
LT308-S7,其具有抗干扰能力强、灵敏度高、线性度好、温漂小等优点。为了减小在电流较弱时的检测误差,本文设计了如图3 所示的增益可调的电流检测电路,传感器输出的电流信号经过精密电阻采样后转换为电压信号Vi,经过电压跟随电路、三级放大电路和肖特基二极管钳位电路,输出电压Vo( Vo= 3nVi /20 + 1. 5,n 为放大倍数) 到STM32 的A/D 模块进行处理。其中开关芯片DG403 由STM32 控制,用于调整电流检测电路增益,小电流选择大增益,大电流反之。由于大扭矩电机额定电流可达232 A,若检测电路增益不可调,则当电流较弱时检测电路的放大增益相对较小,电流的检测精度会降低,而采用增益可调的检测电路可以在电流较弱时提高增益,从而减小检测误差,提高电流检测的分辨率。
表1 为DG403 控制信号与电流检测电路增益放大倍数的对应关系。
表1 DG403 控制信号与增益放大倍数对应表
考虑港口机械存在较强振动和冲击[6],本文利用旋转变压器YS 210XFDW9574A 进行位置检测。其解码电路如图4 所示,采用AD2S99 芯片为旋转变压器提供激励信号,AD2S90 芯片作为旋转变压器/数字转换器( RDC) 。AD2S90 以同步串行方式( SPI) 与控制芯片STM32 之间进行通讯,AD2S99 的励磁信号源的频率可以通过SEL1、SEL2、FBIAS 引脚进行设置,此处激磁频率设为10 KHz,通过AD2S99 内部处理后产生的输出信号SYNREF 与AD2S90 的REF 脚相连,可以补偿旋转变压器一次侧到二次侧的相位偏差,保证它的转换精度。
图3 电流检测电路
图4 旋转变压器解码电路
图5 所示为旋转变压器激励调理电路,旋转变压器激励信号由AD2S99 提供,激励调理电路对激励信号进行放大、滤波,激励调理电路的外部电源采用± 15 V 双电源供电,保证电路静态工作点调零; Ci1为耦合电容,隔直通交; Cf1为补偿相位用;NPN 和PNP 三极管构成推挽电路,用以消除交越失真。
图5 旋转变压器激励调理电路
2. 1. 3 主电路
主电路的整流电路采用了DD600N12 整流模块; 软启动电路采用CM600HU-24F 型号IGBT 功率开关取代继电器以提高系统可靠性,当电容器组充电到母线额定电压的80% 时,将IGBT 接入电路; 滤波电路选择16 个6800 μF 电解电容; 制动电路选择CM400HU-24F 型号IGBT 作为开关元件。考虑大电流功率器件的干扰、散热及经济性等因素,选择6 个独立单元的IPM 模块PM800HSA120的逆变电路方案。PM800HSA120 内部集成有驱动和保护电路,具有过压、欠压和温度保护功能,额定电流800 A,反偏电压1200 V,工作频率可达20 kHz。为了进一步提高IPM 的抗干扰性和可靠性,本文对其驱动电路和保护电路进行了加强设计和一些额外处理。如图6 所示,对IPM 的驱动信号进行了差分处理,将控制芯片STM32 发出的六路驱动信号利用差分驱动芯片变为12 路信号,再在IPM 驱动板上利用差分接收芯片还原为6 路驱动信号,然后经过高速光耦的隔离驱动再送给IPM,如图7 所示,以抑制共模干扰信号,增强了IPM 驱动信号的抗干扰性。图7( a) 所示为W 相的隔离驱动电路; 三相上桥臂采用隔离电源供电,三相下桥臂由一路15 V 供电,图7 ( b) 所示为W 相上桥臂隔离电源电路。
IPM 的故障信号处理电路如图8 所示,出错信号先经过光耦隔离、滤波,然后经过反相施密特触发器,一方面将电压信号反向,另一方面对出错信号进行波形整形,对干扰信号有一定的抑制作用。最后再将处理过的IPM 出错信号输入控制芯片STM32 做出相应处理。
图8 IPM 出错信号处理电路
由于IPM 的开关频率较高,而在功率回路中存在寄生电感,在IPM 开关过程中会产生很高的浪涌电压,造成对器件的冲击,影响器件的性能及使用寿命。为此设计了如图9 所示的IPM 缓冲电路,以降低IPM 开通和关断过程的电压和电流尖峰,从而降低器件开关损耗,保护器件安全运行。其中,选择超快恢复二极管RM25HG-24S 作为缓冲二极管,其耐压1200 V,最大反向恢复时间300 ns; 综合考虑本系统驱动电流频率及IPM 本身性能,将IPM 工作频率选为8 KHz,取直流母线寄生电感50 nH,根据计算及试验,最终选择缓冲电容Cs = 3 μF,缓冲电阻Rs = 12 Ω。
图9 IPM 缓冲电路
2. 2 系统软件设计
系统软件主要由主程序和中断服务程序构成,其中主程序完成各种软硬件的初始化、电机初始位置检测和电机启动等,中断服务程序包括PWM 中断子程序和外部中断保护子程序等。其中PWM 中断子程序是控制系统核心,主要完成对转子电流和速度的采集与处理、PID 调节、电压矢量的计算与选择、PWM 发生等。外部中断子程序主要包括母线电压过、欠压保护、启动保护和温度保护等。当IPM 有出错信号时,STM32 控制高级控制定时器的TIM1_BKIN 信号禁止PWM 输出,保证系统的安全,图10为PWM 中断服务程序流程图。
图10 PWM 中断服务程序
3 实验结果
如图11 所示,为本文所设计永磁同步电机控制系统的STM32 控制板及IPM 驱动板实物。对一台额定功率132 kW、额定电流232 A、输入电压380 V的大扭矩永磁同步电机进行了单元及系统实验。图12 所示为W 相上下桥臂的PWM 波形,测试PWM频率为8 KHz ( 周期125 μs) ; 图13 所示为电机空载运行时W 相的电流波形,表明控制系统的软硬件模块均可有效运行。
图11 控制电路
4 结语
本文提出了一种基于STM32 的大扭矩永磁同步电机的控制系统,设计了STM32 处理器模块、增益可调的电流检测电路、旋转变压器接口电路、IPM驱动保护电路等,采用矢量控制方法,实现了永磁同步电机速度和转矩控制,并进行了试验验证,为大扭矩永磁同步电机驱动控制提供了一种稳定可靠、高性价比的方案。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议