首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 一种UHF频段RFID标签天线设计方案
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
一种UHF频段RFID标签天线设计方案
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2015-8-20 19:19
|
只看该作者
一种UHF频段RFID标签天线设计方案
标签
,
影响
引 言
RFID是一种利用射频通信实现的非接触式自动识别技术,它包括电子标签(tag)和读写器(reader)两个主要部分,附有编码的标签和读写器通过天线进行无接触数据传输,以完成一定距离的自动识别过程。RFID标签天线作为RFID系统的重要组成部分,在实现数据通讯过程中起着关键性作用,因此天线设计是整个 RFlD系统应用的关键。
典型的RFID标签天线包括微带贴片天线和偶极子天线。RFID标签的性能容易受到环境介质的影响,尤其是微带偶极子天线,当它粘贴在一般的绝缘介质 (如玻璃、塑料箱等)表面,会影响天线的电感量和降低谐振频点的品质因数;当它粘附在金属上时,由于电磁感应的作用,会吸收射频能量而转换成自身的电场能,因此减弱了原有射频场强的总能量,同时也会产生感应磁场,磁力线垂直于金属表面,使得射频场强的分布在金属表面发生变形,磁力曲线趋于平缓。因此,当标签贴附在金属表面或非常接近金属表面时,该空间内实际并无射频场强分布,标签天线无法切割磁力线而获得电磁场能量,因而标签无法正常工作。
本文设计了一种UHF频段RFID标签天线。在微带矩形天线理论基础上,改进了E型开槽天线的结构,用微带线侧馈代替了背馈方式,使天线与芯片能良好地匹配,并通过获得双谐振频率扩大了带宽。
1 微带RFID贴片天线
微带RFID贴片天线
微带贴片天线通常是在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法做出一定形状的金属贴片,利用微带线或同轴探针对贴片馈电,如图1所示。因为微带贴片天线自身有一个金属的地板,当其粘附在各种物体上时,天线背面的电磁场不会受到太大影响,故可以在多种环境下正常读取。
利用传输线模型分析微带天线是较有效的方法。该方法的基本假设如下:微带贴片和接地板构成一段微带传输线,传输准TEM波,场在传输方向是驻波分布。而在其垂直方向是常数;传输线的两个开口端(始端和末端)等效为两个辐射缝口径场,即为传输线开口端场强,如图2所示。
图3是按照传输线法建立的微带天线等效电路。Ys为缝辐射导纳;Y0为微带贴片的特性导纳。
2 E型RFID标签天线设计
对于一般的微带贴片天线,它的辐射激励可以等效成一个谐振回路。在矩形微带贴片天线的基础上,采取E型结构,即沿天线的匹配方向将金属贴片开两条平行宽缝 (见图4)。由于贴片上存在两个缝隙的作用,促使天线的谐振特性受到了影响,即原来的一个谐振回路变成了两个谐振回路,当这两个谐振回路的谐振频点靠得比较近时,就达到了扩展频带的目的。
本文在E型背馈天线的基础上,提出了一种变形的侧馈天线方案,如图5所示。天线主体由一个矩形贴片开缝构成,顶部切去了两个角。由一个功分器和一段微带线作为馈线与芯片匹配,而芯片的另一段通过微带线接地。
由于高介电常数的介质能有效地减小天线的尺寸,所以基片选用尺寸为84 mm×54 mm×1.4mm的陶瓷氧化铝.介电常数为9~10。微带标签天线的物理尺寸为:L1=47.6 mm,L2=4 mm,L3=18 mm,L4=3.5 mm,W1=1 2.6 mm,W2=10 mm,W3=6 mm,W4=2 mm,S=3 mm。
该天线采用的芯片在915 MHz时的阻抗为34.5一j815,呈现明显的容抗。采用Ansoft公司的电磁仿真软件HFSS 10.O对天线进行仿真。经过调试和优化,得到天线的S11曲线,如图6所示。该天线分别在905 MHz和920 MHz有两个谐振频率。在905 MHz时,S11为一28 dB;在920 MHz时,S11为一37 dB,这两个谐振频率都比较窄,通过调整天线,使两个谐振频率靠近915 MHz,以达到增加带宽的目的。该天线增益在915 MHz时仿真结果为0.34 dBi(见图7),满足RFID系统读取的要求。
将RFID标签天线分别粘附在装水的塑料盒面(塑料盒很薄)、金属面、塑料制品上或直接放在空气中,读写器在902~928 MHz中设置广谱跳频,RF功率设置为36 dBm,读写器天线增益为12 dBi。测试读取距离如表1所示。该RFID标签的工作性能在不同物质环境中表现出较为满意的一致性。
3 结 语
实验测量表明,该天线在金属表面读取距离为11.5m,在不同物质表面读取距离基本不变,且性能稳定。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议