首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于高性能数字芯片的多协议可编程接口设计之二

基于高性能数字芯片的多协议可编程接口设计之二

2 电路实现


         就低基准电压缓冲器而言,设计采用PMOS差分输入级。影响性能指标的关键因素包括输入差分放大器的增益、噪声容限、共模抑制能力等。输入协议中频率最高的是HSTL协议,它可以达到200 MHz以上的工作频率。以HSTL协议为例,JEDEC8标准定义了DC及AC两种逻辑标准,且两种标准之间有大约100 mV的电平差值。这是因为当输入信号始终大于DC阈值时,逻辑状态可以保持稳定,避免发生翻转,便于设计高增益的差分输入级。噪声容限NM在输入输出电路中是特别重要的指标,过低的噪声容限会容易引起逻辑错误。高噪声容限NMH与低噪声容限NML分别定义为

        对于HSTL协议来说,单端输入时的典型VMH及NML均为250 mV,差分输入时则可以抑制650 mV的共模噪声,在设计时还应尽量提高差分输入管的等效小信号增益gm,提高共模抑制比CMRR。为防止衬底噪声耦合到输入通路,可以在设计时在版图中加入保护环,对其进行隔离。

        高基准电压缓冲器设计思路与低基准电压缓冲器基本相同,但输入端采用的是NMOS差分输入级。单端输入缓冲器的基本结构类似于一个施密特触发器,具有较高的输入门限电压,在输入信号达到门限电压之后,输出通过缓冲器翻转,并进行整形。

         可编程延迟模块采用多级反相器延迟线结构,并有多个选择输入路径,利用各个路径反相器数量及尺寸的不同,通过四个开关管控制延迟量。在进入芯片之前,经过延迟的信号与未经过延迟的信号还可通过一个多路选择器MUX进行选择,以满足内部时钟的不同需要。最终完成的电路如图3所示。


3 版图设计


        基于SMIC18混合信号工艺,采用CadenceVirtuoso工具设计版图。由于本设计是与输入输出接口电路的其他部分电路整体流片,故该可编程输入接口电路版图设计的难点在于与可编程输出缓冲及ESD的连接部分。首先,必须在设计ESD电路时注意NMOS管的栅长不能取最小宽度,必须要稍大一点,PMOS管则使用最小规则。ESD电流回路导电层拐角为45°,NMOS与PMOS之间采用双保护环结构且两种管子之间距离必须大于15μm;其次,电路采用插指结构,防止产生寄生hipolar器件;最后,在设计允许的情况下,电源及地环路的金属线宽尽量大,避免输出缓冲器的大电流从输入输出共用的PAD端泄露到输入电路中来造成电路功能不稳,ESD电路与最终输入路径的距离也要保持在50μm以上,如图4(a)。最终,采用Cadence Virtuoso工具,设计完成的整体版图如图4(b)所示。

4 流片验证与测试


         基于SMIC18混合信号工艺制作了芯片,封装形式为DIP28陶瓷封装,拍摄照片如图5所示,该芯片为完整的带ESD保护的可编程输入输出接口。其中,与本文设计电路相关的引脚对应关系如表2所示。




         其中,VCCI及GND为可编程输入接口电路供电及接地脚,Bit0~Bit1为输入缓冲器选择控制端,Bit2~Bit5为延迟量控制端,Bit3及Bit4分别为未经延迟及经过延迟的输入延迟,最终可以通过数字芯片内部MUX进行选择输入,PAD及Vref分别为信号PAD线及外部基准电压接口PAD线。

        对芯片进行了直流及交流特性测试,测试结果显示,在芯片上电之后,电路输入输出直流电平,控制信号电平,输入信号波形,可控延迟量均与设计指标非常接近,达到了较好水平。输入路径自身延迟也在可以接受的范围内,将本芯片的测试延迟与Xilinx公司Vitex5芯片数据进行对比,如表3所示。

5 结语


         基于SMIC混合信号工艺,给出了一个应用于高性能数字芯片的可编程输入接口电路设计方案,并流片制作。测试结果表明,电路拓扑结构是完全成功的,并可以与其他模块一起集成在数字芯片PAD线与内部电路之间,完成可控输入功能,支持多协议标准,并支持延迟量控制。
记录学习中的点点滴滴,让每一天过的更加有意义!
返回列表