首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

数字工程师需要掌握的射频知识

数字工程师需要掌握的射频知识

一、前言
随着人们对于海量数据传输和存储的需要,越来越多的数字总线数据速率达到了Gbit/s以上,比如HDMI的数据速率达到3.4Gb/sUSB3.0 的数据速率达到5Gb/sSATA的数据速率达到6Gb/sPCIE3.0的数据速率达到8Gb/s,通信中也越来越多采用10Gb/s25Gb/s的速率进行信号传输。这些数字信号的数据速率已经达到甚至超过了我们传统上所说的射频或微波的频段,真实的数字信号在传输过程中,也越来越多地表现出其微波电路的特性。
在对这些高速信号进行分析时,传统的时域分析方法面临精度不够以及分析手段欠缺等问题,而射频微波领域的频域的分析手段则非常成熟和完善。因此,对于高速数字信号的分析和测量也越来越多地开始采用一些射频或微波的分析方法。
二、数字信号的带宽
要进行数字信号的分析,首要的原因是真实传输的高速数字信号已经远远不是教科书里理想的0/1电平。真实的数字信号传输过程中一定会有一些(甚至很严重的)失真和变形。

图1. 理想和真实数字信号的差异
要进行数字信号的研究,首先要得到真实的数字信号波形,这就涉及到使用的测量仪器问题。观察电信号的波形的最好工具是示波器,当信号速率比较高时,一般所需要的示波器带宽也更高。如果使用的示波器带宽不够,信号里的高频成分会被滤掉,观察到的数字信号也会产生失真。很多数字工程师会习惯用谐波来估算信号带宽,但是这种方法不太准确。
对于一个理想的方波信号,其上升沿是无限陡的,从频域上看它是由无限多的奇数次谐波构成的,因此一个理想方波可以认为是无限多奇次正弦谐波的叠加。

但是对于真实的数字信号来说,其上升沿不是无限陡,因此其高次谐波的能量会受到限制。比如下图是用同一个时钟源分别产生的50Mhz和250MHz的时钟信号的频谱,我们可以看到虽然输出时钟频率不一样,但是信号的主要频谱能量都集中在5GHz以内,并不见得250MHz的频谱分布就一定比50MHz的大5倍。

图2. 同一信号源产生的不同频率时钟信号的频谱
对于真实的数据信号来说,其频谱会更加复杂一些。比如伪随机序列(PRBS)码流的频谱的包络是一个Sinc函数。下图是用同一个发射机分别产生的800Mbps和2.5Gbps的PRBS信号的频谱,我们可以看到虽然输出数据速率不一样,但是信号的主要频谱能量都集中在4GHz以内,也并不见得2.5Gbps信号的高频能量就比800Mbps的高很多。

图3. 同一信号源产生的不同速率数字信号的频谱
频谱仪是对信号能量的频率分布进行分析的最准确的工具,所以数字工程师可以借助于频谱分析仪对被测数字信号的频谱分布进行分析。当没有频谱仪可用时,我们通常根据数字信号的上升时间去估算被测信号的频谱能量:
Maximum signal frequency content = 0.4/fastest rise or fall time (20 - 80%)
Or
Maximum signal frequency content = 0.5/fastest rise or fall time (10 - 90%)
继承事业,薪火相传
返回列表