首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于FPGA的蓄电池内阻在线检测系统之二

基于FPGA的蓄电池内阻在线检测系统之二

  • 各子模块的实现方法:
信号产生模块:根据交流注入法的思想,蓄电池两端必须引入交流信号,交流信号的频率大小由蓄电池的特性所决定,经研究,蓄电池在低频段内阻有较好的线性特性;本方案中信号采用的是正弦信号,信号频率是f=20Hz,信号电压峰-峰值设定为up-p=5V

由于蓄电池的内阻是毫欧级,交流信号发生器产生的信号电流值无法满足电路检测的要求,在电路后端需要对其信号进行功率放大,放大后的电流值峰-峰值设定为ip-p=800mA。模块如图5所示:

图5 信号产生模块


其中,Part1部分是产生正弦交流信号部分,Part2是功率放大电路。功率放大的信号经过隔直电容接入到蓄电池的两端。

端电压检测模块:由于蓄电池的内阻总是存在的,加载在两端的的交流信号将产生压差,端电压信号由隔直电容接入到检测电路。检测电路由差分放大电路和高频滤波电路构成。由于蓄电池两端的电压值是微伏级,为此,电路需要高放大倍数、有强抗干扰能力、低温漂的放大器件,本方案中选择AD620仪表放大器。如图6所示:

图6 端电压检测模块


本方案设计是在蓄电池充电或浮充的状态下在线检测内阻的,通常蓄电池是用UPS充电,而UPS与市电连接,所以,在线状态下的蓄电池会有很强的高频干扰。信号放大后需进行高频滤波,滤掉高次谐波,保留原有的低频部分。滤波后的电压信号将是本系统所需要的蓄电池端电压信号。

在端电压检测模块和信号模块产生模块中,考虑到导线的电阻对检测精度的影响,本方案中采用了四线法接入到蓄电池两端(如图4),交流信号注入采用等长双导线,端电压检测采用另外一对等长双导线。

电流检测模块:为了能检测到通过蓄电池的交流电流信号的大小,在交流信号的注入端串联一只标准电阻,标准电阻电压与电流同相,检测标准电阻端电压就可以算出流过该电阻电流,由于采用了四线法,流过标准电阻的电流等同于蓄电池电流。本方案中采用标注电阻值是1欧姆2瓦。为了能达到系统所需要的电压值范围,需对电阻的端电压信号进行适当地放大。具体如图7所示:

图7 电流检测模块


电压与电流相位检测模块:分析蓄电池的内阻模型得知,蓄电池内部存在一定感性或容性值,在不同的频率条件下表现出不同特性,电压与电流产生相位差。具体如图8所示:

图8 相位检测


其中,u1(t)表示蓄电池端电压的信号,u2(t)表示信号源注入电压信号,u(t)表示u1(t)u2(t)乘积信号。

蓄电池端电压的信号u1(t)=A *cos(ωt+θ),其中ω 表示注入交流信号的频率,θ表示蓄电池的端电压偏移的相位,A表示信号幅值;信号源注入电压信号u2(t)=B*cos(ωt),其中ω表示注入交流信号的频率,B表示注入电压信号幅值。所以两信号乘积后等于

                                                           

其中,K表示乘法器的系数。

u(t)信号由低通滤波器滤掉低频部分,最后得到系统所需要的相位差的余弦值

环境温度检测模块:蓄电池工作的环境温度对蓄电池性能产生重要的影响,机房的温度过高直接影响蓄电池的寿命,所以实时检测蓄电池温度,保持机房恒温非常必要。具体电路实现如图9所示:

图9 温度检测模块


传感器部分采用了桥式测量法,精确测量温度变化,传感器信号然后经过差分放大送到系统主控制芯片。

FPGA模块:蓄电池端电压u1(t)和蓄电池电流i(t)(1欧姆标准电阻的电压值等于蓄电池电流值),分别由模拟开关控制输入到有效值变换器,两路交流电压信号和电流信号经过有效值变换器得到直流信号,然后由AD变换成数字信号送到FPGA模块进行信号处理;同时,由相位检测电路检测出的蓄电池端电压与电流的相位差,经过直流放大和AD转换后送到FPGA模块。最终,FPGA模块得到蓄电池的端电压信号,电流信号及相位差。所以蓄电池的内阻值可以有如下的公式计算出:

                                                     

其中,U,I是电压和电流的有效值,θ是两者的相位差。

利用FPGA模块高效计算能力可以实时计算蓄电池内阻值,随后,把该阻值送到单片机进行处理。具体电路如图10所示:

图10  FPGA模块


单片机控制模块:该模块主要有单片机、键盘、液晶显示和PC 通信组成。单片机主要控制系统中的各开关量,接收温度传感信号,响应按键信号,输出显示信号,以及与PC机通信。具体描述如下:

  • 开关量的控制:交流信号接入开关分量,蓄电池端电压接入系统开关分量,模拟开关选择开关分量。
  • 人机接口:置入单片机的按键信号分别是系统复位,模式选择(数字显示模式,曲线显示模式),与PC机通信。其中LCD液晶显示的是内阻值,当前蓄电池电压值,充电电流值,环境温度。
  • 微处理器:进行数据处理,分析与计算各数据,重要数据输送到Flash保存,异常情况报警,以及与控制各模块。
PC机界面:读取微处理器的数据,在图像界面下对各参数分析,图形和数字显示,判断蓄电池当前的运行状态,发现异常问题时报警。
记录学习中的点点滴滴,让每一天过的更加有意义!
返回列表