首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

bp神经网络及matlab实现 (2)

bp神经网络及matlab实现 (2)

(2) 反馈神经网络 ( Feedback Neural Networks )
       反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。

图5. 反馈神经网络


(3) 自组织网络 ( SOM ,Self-Organizing Neural Networks )
       自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

图6. 自组织网络


4. 神经网络工作方式
       神经网络运作过程分为学习和工作两种状态。
(1)神经网络的学习状态
       网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )无导师学习( Unsupervised Learning )两类。
       有导师学习算法将一组训练集 ( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括:
1)  从样本集合中取一个样本(Ai,Bi);
2)  计算网络的实际输出O;
3)  求D=Bi-O;
4)  根据D调整权矩阵W;
5) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。
  BP算法就是一种出色的有导师学习算法。
       无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。
       Hebb学习律是一种经典的无导师学习算法。
(2) 神经网络的工作状态
       神经元间的连接权不变,神经网络作为分类器、预测器等使用。
  下面简要介绍一下Hebb学习率与Delta学习规则 。
(3) 无导师学习算法:Hebb学习率
  Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。
       为了理解Hebb算法,有必要简单介绍一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后如果响铃但是不给食物,狗也会流口水。

图7. 巴甫洛夫的条件反射实验


  受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。
  Hebb学习律可表示为:


       其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。
(4) 有导师学习算法:Delta学习规则
  Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下:



       其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj为0或-1(根据激活函数而定)。a是表示学习速度的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。
       Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。这个增大或减小的幅度就根据上面的式子来计算。
(5)有导师学习算法:BP算法
  采用BP学习算法的前馈型神经网络通常被称为BP网络。

图8. 三层BP神经网络结构


  BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所示。
  BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。




第二节、神经网络实现


1. 数据预处理
       在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。
(1) 什么是归一化?
数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。
(2) 为什么要归一化处理?
<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。
<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。
<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。
<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。
(3) 归一化算法
  一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:
       <1>

y = ( x - min )/( max - min )

  其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。
       <2>

y = 2 * ( x - min ) / ( max - min ) - 1

       这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。
(4) Matlab数据归一化处理函数
  Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。
<1> premnmx
语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)
参数:
pn: p矩阵按行归一化后的矩阵
minp,maxp:p矩阵每一行的最小值,最大值
tn:t矩阵按行归一化后的矩阵
mint,maxt:t矩阵每一行的最小值,最大值
作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。
<2> tramnmx
语法:[pn] = tramnmx(p,minp,maxp)
参数:
minp,maxp:premnmx函数计算的矩阵的最小,最大值
pn:归一化后的矩阵
作用:主要用于归一化处理待分类的输入数据。
<3> postmnmx
语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)
参数:
minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值
mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值
作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。
2. 使用Matlab实现神经网络
使用Matlab建立前馈神经网络主要会使用到下面3个函数:
newff :前馈网络创建函数
train:训练一个神经网络
sim :使用网络进行仿真
下面简要介绍这3个函数的用法。
继承事业,薪火相传
返回列表