首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

TMS320LF2407A在混合电压中的设计(2)

TMS320LF2407A在混合电压中的设计(2)

 3 逻辑接口设计
  由于TMS320LF2407A的引进,不同电压的逻辑系统将共存于同一个电路板中,譬如在同一电路板中存在3.3V和5V两种逻辑系统。因此,在设计逻辑器件之间的接口时,采用适当的方法,可以避免不同电压的逻辑器件接口时出现问题,从而保证所设计的电路数据传输的可靠性。
  3.1 逻辑电平不同时接口出现的问题
  在混合电压系统中,不同电源电压的逻辑器件相互接口时会存在以下三个主要问题:加到输入或输出引脚上允许的最大电压的限制问题;两个电源间电流的互串问题;必须满足的输入转换门限问题。

  器件对加到输入脚或输出脚的电压通常是有限制的。这些引脚由二极管或分位元件接到Vcc。如果接入的电压过高,电流将会。通过二极管或分位元件流向电源。例如,3.3V器件的输入端接上5V信号,则5V电源将会向3.3V电源充电,持续的电流将会损坏二极管和电路元件。 在等待或掉电方式时,3.3V电源电压降到0V,大电流将流通到地,这使总线上的高电平被下拉到地,这些情况将引起数据丢失和元件损坏。必须注意的是:不管是在3.3V的工作状态或是0V的等待状态,都不允许电流流向Vcc。
  另外,用5V的器件驱动3.3V的器件会有很多种不同情况,而且TTL和CMOS间的转换电平也存在着不同情况。在这些情况下,驱动器必须满足接收器的输入转换电平,并且要有足够的容限以保证不损坏电路元件。
  3.2 3.3V和5V逻辑器件之间的接口
  TMS320LF2407A的典型工作电压是3.3V,其I/O口的电平也是3.3V。在进行外围接口设计时,如果外围器件的工作电压是3.3V,接口电路就比较简单,可以直接相连。如CYPRESS的CY7C1021BV33是一种64Kxl6的高性能CMOS静态RAM,可以直接与TMS320LF2407A相连,对TMS320LF2407A的数据区进行扩展。 但是,由于现在有许多常用外围芯片的工作电压都是5V,如EPROM等,而TMS320LF2407A的I/0工作电压是3.3V,I/O的电平也是3.3V,因此在TMS320LF2407A和5V的外围芯片之间就存在着可靠接口的问题。图2为5V CMOS、5V TTL和3.3V TTL电子的转换标准。其中,VOH表示输出高电平的最低电压,VIH表示输入高电平的最低电压,VIL表示输入低电平的最高电压,VOL表示输出低电平的最高电压。从图中可以看出5V m和3.3V TYL的转换标准是一样的,而5V CMOS的转换小平是不同的。因此,在将3.3V和5V系统接口时,必别考虑到两者的不同。
  所以,设计3.3V和5V的逻辑器件之间的接口时应考虑以下四种情况:
  (1)5V TTL器件驱动3.3V TTL器件(LVC)。由于5VTTL和3.3V TTL的电子标准是一样的,因此,如果3.3V TTL的器件可以承受5V的电压,两种器件之间就可以直金相连,而不需要额外的器件。但是如果3.3VTTL的器件不能承受5V的电压,则需要添加专门的电路或者器件进行电平转换,譬如在接口设计中,增加一个额外的二极管来产生0.7V的电压降。当然,最好的办法是在两个器件之间增加一个TI公司的CBT标准的缓冲器,该缓冲器中集成了上述二极管。
  (2)5V CMOS器件驱动3.3V TTL器件(LVC)。显然,两者的转换电平是不一样的。对5V CMOS的VOH和VOL以及3.3V TrL的VIH和VIL做十分析可以得出,虽然两者存在着一定的差别,但是能够承受5V电压的3.3V器件与5V CMOS器件接口时,却可以正常工作。也就是说,5V CMOS器件可以驱动那些能够承受5V电压的3.3V器件。
  (3)3.3V TTL器件(LVC)驱动5V TTL器件。由于两者的转换电平标准是一样的,因此两者相连时,不需要额外的器件。因为5V TTL器件的VIH和VIL电平分别是2V和0.8V,所以只要3.3V器件的VOH和VOL电平分别是2.4V和0.4V,5V TTL器件就可以将输入电平识别为有效电平。
  (4)3.3V TTL器件(LVC)驱动5V CMOS器件。两者的转换标准是不一样的。从图中可以看到,3.3V器件的VOH为2.4V,而5V CMOS的VIH为3.5V。即使3.3VLVC输出的电压达到3.3V,也不能够满足5V CMOS的高电平所要求的最小值,所以3.3V TTL器件(LVC)是不能直接驱动5V CMOS器件的。在这种情况下,可以使用TI公司提供的一种驱动器,如SN74ALVCl64245和SN74ALVC245。此类芯片采用双电压供电,一边是3.3V供电,而另一边是5V供电,因此可以较好地解决3.3V器件和5V CMOS器件之间的电平转换问题。
  3.3 TMS320LF2407A与外围器件的接口实现
  在设计TMS320LF2407A的外围接口时,首先需要仔细分析TMS320LF2407A以及相关外围器件的电平转换标准,这可以从器件的电气参数表中获得。TMS320LF2407A、M27C516(EPROM)和80C250的电平标准。
  M27C516是一个32K的EPROM,可使用该器件对TMS320LF2407A的程序区进行扩展。TMS320LF2407A的VOH和VOL分别为2.4V和0.4V,而M27C516的VIH和VIL分别是2.0V和0.8V,因此从TMS320LF2407A到M27C516的单线控制线和地址线是可以直接相连的。但是LF2407A不能承受5V的电压,所以从M27C516到TMS320LF2407A的数据线不能够直接相连。解决的办法是在中间增加一个缓冲器件,如74ALVCl64245。它采用双电压供电,一边采用3.3V供电,另一边采用5V供电,因此可将3.3V的电平转换为5V的电平,相反也可以将5V的电平转换为3.3V的电平,它可以用作两个8位总线驱动器或者一个16位总线驱动器。TMS320LF2407A和M27C516通过74LVCl64245的接口示意图如图3所示。
  总线接口时可以采用增加缓冲器件的方式,但是对于串口的接口,没有必要增加缓冲器件,可以设计一些简单的电路来实现,如与82C250的接口。82C250是驱动CAN控制器和物理总线间的接口,提供对总线的差动发送和接收功能。TMS320LF2407A的VOH是2.4V,而82C250的VIH是3.5V以上,很明显TMS320LF2407A驱动不了82C250; 同时,82C250的VOH大于4V,而TMS320LF2407A的VIH最大为3.6V,不能承受5V的电压,因此,在TMS320LF2407A与82C250接口需要增加额外的电平转换电路。图4为一个由电阻和二极管组成的电平转换电路,在CANTX输出端,增加了一个二极管,从而使TXD接收的电压提升了0.7V;同时RXD的电平经过了两个电阻的分压,使得CANRX接收的电平可以保证在3.3V内。
  当然,在CANTX和TXD之间还可以使用74LVC07来实现接口。这是一种简单的电平移位器件,它使用一个漏极开路的缓冲器去驱动5V CMOS器件的输入。因此,在CANTX和TXD之间增加一个74LVC07,并在其输出端可通过上拉电阻接到5V电源上,从而驱动TXD。 5V和3.3V器件甚至更低电压的器件并存于一个系统中,这种情况已经存在并且还将存在很长一段时间。因此在设计这种混合电压的系统时,需要仔细分析其中的逻辑器件接口问题。对于TMS320LF2407A来说,它是低电压的芯片,如果与其它芯片的接口设计不好,不仅无法体现其低功耗的特点,而且会降低数据传输的可靠性,甚至会损害芯片。本文中介绍的几种方法,经实验验证具有较高的可靠性。
继承事业,薪火相传
返回列表