首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

功率MOSFET的应用问题分析(2)

功率MOSFET的应用问题分析(2)

问题3AOD4126的数据表中,红色标注的IDIDSMIDM有什么区别?PDPDM的值是否有标错?另外,关于RθJARθJC,作为用户要按照备注中的哪一项判定?对于同样规格的MOSFET,双通道和单通道相比,优势在哪里?是不是简单的Rdson减半、ID加倍等参数合成?
回复MOSFET的数据表中,IDIDSM都是计算值,其中,ID是基于RθJCRdson以及最高允许结温计算得到的,IDSM是基RθJARdson以及最高允许结温计算得到的。PDPDM也是基于上述条件的计算值。


电流的具体定义,可以参考文献:理解功率MOSFET的电流,今日电子:2011.11


在实际的应用中,由于MOSFET所用的散热条件不一样,因此,在开关过程中,还要考虑动态参数,所以,ID没有实际的意义。
RθJARθJC是二个不同的热阻值,具体的定义在数据表中有详细的说明,注意的是,数据表中的热阻值,都是在一定的条件下,测量得到的。实际应用过程中,由于条件不同,得到的测量结果并不相同。
使用双通道和单通道的MOSFET,要综合考虑开关损耗和导通损耗,Rdson不是简单的减半,因为二个功率管并联工作,不平衡性的问题永远是存在的,而且,动态的开关的过程中,容易产生动态的不平衡性。如果不考虑开关损耗,仅仅考虑导通损耗,那么还是要对Rdson作一定的降额。



问题4不同的测试的条件为影响MOSFET的数据表中的VGS(th)BVDSS吗?ATE是如何判断的?
回复:不同测试条件,结果会不同,因此,在数据表中,会标明详细的测试条件。对于AET的测试,以VGS(th)为例,它和Igss相关,如AON6718L,当GS极加上最大20V电压,注意到VDS=0V,如果Igss小于100nA, 由表明通过测试。
不同的公司STFairchildIRVishay等,可能使用不同的Igss,如IR1010使用200nAIR3205使用100nA。目前,行业内使用100nA更通用。同样的,BVDSS的测试条件:ID=250uA, VGS=0V,如果ID 越大,BVDSS电压值越高。



问题5一个100VMOSFETVGS耐压大概只能到30V。在器件处于关断的时刻,VGD大概能到100V,是因为GS极间的栅氧化层厚度比较厚,还是说压降主要在沉底和飘移电阻上面?
回复GS电压主要由栅氧化层厚度控制,GD主要由EPI+层厚度来控制,所以VGD耐压高。




文章来源:微信公众号  融创芯城(一站式电子元器件、PCB、PCBA购买服务平台,项目众包平台)
融创芯城(一站式供应链)
平台网址:http://www.digiic.com
电子技术群:499391543
问题6:关于雪崩,下面描述是否正确?
1、单纯的一次击穿不会损坏MOSFET?
回复:很多时候,就是测1千片,或者1万片,电压高于额定的电压值,MOSFET也不会损坏。

2、雪崩损坏MOSFET有两种情况:一种是快速高功率脉冲,直接使寄生二极管产生较大雪崩电流,芯片快速加热过温损坏。另一种是寄生三极管导通,并发生二次击穿?
回复:是的,特别是新一代工艺的MOSFET,基本上是后一种损坏方式:寄生三极管导通。寄生三极管的导通,发生二次击穿并不全是因为雪崩发生,还可能由于dv/dt过高的原因而导致。

3、雪崩损坏都发生在VDS大于额定值的情况?
回复:是的。但是高温条件下,一些大电流的关断,可能在关断过程中,发生寄生三极管导通而损坏,虽然看不到过压的情况,但是作者仍然将其定义为:雪崩UIS损坏。

4、关于(2)中两种情况,什么情况下倾向于第一种发生,什么情况下倾向于第二种发生?
回复:如果单元非常一致,散热非常好均匀,热平衡好,第一种情况发生,早期的平面工艺有时候就会看到这种损坏模式。现在,新的工艺导致单元的密度越来越集中,产生的损坏通常用就是第二种。

    体内寄生三极管导通产生雪崩损坏,同时伴随着体内寄生三极管发生二次击穿,此时,集电极电压在瞬态时间1-2个N秒内,减少到耐压的1/2,原因在于,内部的电场电流密度很大,耗尽层载流子发生雪崩注入。
电流大,电压高,电场大,电离强,大量的空穴电流流过RB,寄生三极管导通,集电极电压快速返回到基极开路时的击穿电压。增益大时,三极管中产生雪崩击穿,此耐压值低。
三极管管中产生雪崩注入条件:电场应力,正向偏置热不稳定性。
MOS关断时,沟道漏极电流减小,感性负载使VDS升高,以维持ID电流的恒定,ID电流由沟道电流和位移电流组成。位移电流是体二极管耗尽层电流,和DV/DT成比例。
VDS升高和基极放电、漏极耗尽层充电速度相关。漏极耗尽层充电速度和电容COSS、ID相关。ID越大,VDS升高越快。
漏极电压升高,体二极管雪崩产生载流子,全部ID电流雪崩流过二极管,沟道电流为0。

UIS的理解,请参考文献:理解功率MOSFET的UIS,今日电子:2010.4
         
        作者遇到过很多的工程师问这样的一个问题:如果说UIS的雪崩损坏时,电压通常会达到耐压值的1.2~1.3倍,可以明显看到电压有箝位(通俗说法:波形砍头),那么,对于一个100V的MOSFET,工作在105V是否安全,110V是否安全?如上所述,100V的MOSFET,加上110V的电压,不会损坏,那么,安全的原则是什么呢?
对于设计工程师来说,所要求的就是在最极端的条件下,设计的参数有一定的裕量,也就是从设计的角度来说,保持系统的安全和可靠性,永远都排在最优先的位置。
因此,笔者建议的原则是:在动态的极端条件下,瞬态的电压峰值不要超过MOSFET的额定值。


问题7:关于Trench MOS的SOA, 听说MOSFET在放大区有负温度系数效应,所以容易产生热点。这是否就是MOSFET的二次击穿,但是,看资料MOSFET的Rdson是正温度系数效应,不会产生二次击穿。这一点,一直都没有了解过,能否指点一下,后面再请教详细情况。
回复:平面工艺和Trench工艺的MOSFET都有这个特点,这是MOSFET固有特性。Rdson的正温度系数效应是在完全导通的稳态的条件,才具有这样的特性,可以实现稳态的电流均流,但是,MOSFET在
动态开通的过程中,会跨越负温度系数区进入到完全开通的正温度系数区,同样,关断过程中,跨越完全开通的正温度系数区进入负温度系数区。只是因为平面工艺
的单元密度非常小,产生局部过流和过热的可能性小,因此热平衡好,相对的,动态经过负温度系数区时,抗热冲击好。通常在设计过程中,要快速的通过此区域,
减小热不平衡的产生。

具体内容,参考文献:理解功率MOSFET的Rds(on)温度系数特性,今日电子:2009.11
应用于线性调节器的中压功率功率MOSFET选择,今日电子:2012.2
功率MOS管Rds(on)负温度系数对负载开关设计影响,电子技术应用:2010.12
融创芯城(一站式供应链)
平台网址:http://www.digiic.com
电子技术群:499391543
返回列表