制作试验电路:
试验用的电路如图⑨,分析如后:P1的4-7脚并联(为了加大输出电流),接IC1的VCC端,为IC1供电。P1的2脚接IC1的SCL端,用做I2C总线的串行时钟输出。因I2C总线中数据线(SDA)在不同的时间可能是输入也可能是输出,所以接在IC1 SDA端上的信号也有两路,输出时,P1 3脚输出低电平T1导通,SDA被置为低电平,P1 3 脚输出高电平T1截止,因 R1的作用SDA被置为高电平。输入时,P1 通过判断 13 脚上的电平高低,来读取SDA上的数据。要注意的是用于输入时T1必须是截止的,以免SDA被箝位。

这个电路具有通用性,24C01、24CO2、24LC64等24系列的I2C EEPROM 均可按这个电路与并口连接,所以不妨把它当作实用工具来认真制作。先找一条并口电缆,看电缆插头的形式,找一个与之配套的25针插座,购买一个拨动式的IC插座,将IC插座按图中IC1的连接方法与找来的并口插座相连,然后按图将T1、R1、C1、直接焊在IC插座或并口插座上,要尽量作的紧凑些。最后将电路固定在一个合适的小塑料盒内,好了,现在它是我们的试验器材,等看过后面的内容,你会发现只要为其配上软件,它就是一个用于读写I2C EEPROM 的好工具。
试验程序编写:
和其它高级语言相比,C 更适合于对硬件编程。本试验所用的程序就是在 Tubor C 2.0 环境下编译通过的。
一、C 语言相关:对本试验较关键的几个函数和运算。
读端口函数 inprotb(); 可从指定的输入端口读入一个字节,并返回这个字节,用法为:inprotb(端口号或端口地址);例如:b=inprotb(379H);由于379H为‘打印机状态’寄存器的地址,因此执行后变量 b中将存放由函数读取的 379H 的值。
写端口函数 outprotb(); 可写一字节数据到指定的输出端口,用法为:outprotb(端口地址,整型数);例如:outprotb(378H,1);由于端口地址378H为并口的‘数据锁存器’地址,因此执行后将在并口的 2 脚输出高电平,3-9脚输出低电平。
位运算:位运算的对象只能是整型或字符型数据,本试验程序中用到了两种位运算。左移运算(<<):运算符左边是位移对象,右边是整形表达式,代表左移的位数,左移时,右端补 0;左端移出的部分舍弃。右移运算(>>):运算符的使用方法与左移运算符一样,所不同的是移位方向相反。右移时,右端(低位)移出的二进制数舍弃,左端(高位)移入的二进制数分两种情况:对于无符号整数和正整数,高位补 0,对于负整数,高位补 1。举例:假设b和c为字符型变量,并且 b 已赋初值,用二进制表示时 b 的值为 01110110 ;现在若要求的 b 的第 3 位的二进制数是 1 ,还是 0 ,可暂将 b 的值赋给变量 c (c=b;),再对 c 进行位移运算,先将 c 右移 2 位(c=c>>2;),再左移 7 位(c=c<<7;),然后用程序判断 c 的值是否为 0,为0则所求位的二进制数为 0,否则为所求位的二进制数为 1。经过位移 c 的值变为‘10000000’,而不是0,因此可以判断 b 的第 3 位中的二进制数是 1。后面的试验程序就是用这种方法来接收应答和读取SDA上的数据的。
二、编程前的分析:现在从编程的角度对图⑨ 的电路再次分析。参见表1、表2、表3。现在计算机上的并口通常被默认的设置成端口2,既数据锁存器地址为378H的端口。
并行口(P1)13脚:它是一个输入端,是‘打印机状态’寄存器(见表2、表3)中的位 4。‘打印机状态’寄存器地址为379H,可以用 C 语言中的 inprotb() 函数来读取379H的值,然后通过位运算即可获得当前P1 13脚(IC1的SDA端)的电平状态。注意:在读端口时,要确认T1是截止的。
并行口(P1)2 脚:它是‘数据锁存’寄存器中的位 0,在这里作为一个输出端。‘数据锁存’寄存器的地址为378H,可以用 C 语言中的 outprotb() 函数给378H的位 0 写入1或0,,从而模拟出 I2C 总线中SCL上的高、低电平。这里需要注意的是,从2脚输出时,用函数写数据锁存器每次只能改变位 0 的状态,而不能影响到其它位的状态。
并行口(P1)3 脚:它是‘数据锁存’寄存器中的位 1,在这里作为输出端与T1基极相连,可以用 C 语言中的 outprotb() 函数给‘数据锁存’378H的位 1 写入1或0,从而控制 T1 的导通和截止,配合 R1 的作用,模拟出I2C时钟线SDA上的高、低电平信号。 3 脚输出低电平将使 T1 导通,SDA既被置为低电平,3 脚输出高电平 T1 截止,由R1将SDA上拉为高电平。要注意操作这一位时不能影响到其它位。
并行口的 4-7 脚:它们分别是‘数据锁存’寄存器中的位2、位3、位4和位5,这4 位全部作为输出端接在IC1的VCC上,通过写端口函数将它们全部写入1(既都输出高电平),用于给IC1提供电源。注意,因这4位是作为电源使用的,必须保证这4位的值始终为1 ,所以每次写378H时要特别注意。这4个引脚是并在一起的,其中若有1位被写成0,就会因高低电平抵消而中断IC1的电源使操作失败,甚至可能会损坏并口。
三、编程:通过上面分析,要用并口来模拟I2C总线来读写 24LC02 ,程序需有以下几部分。
发送I2C开始信号:用 outprotb() 函数向378H写入16进制数“0XFF”(即2-9脚全部输出高电平),SCL和SDA都为高电平,延时一段时间后,向378H写入“0XFD”(其它脚状态不变,只是将位 1 置为低电平),使SDA由高电平变为低电平,即产生了I2C的开始信号。最后将在378H中写入“0XFC”(即其它脚不变,将位0和位1置为低电平)使SCL为低电平,以完成一个时钟,也为后面的读写作准备。
发送I2C停止信号:I2C的停止信号是在SCL为高时,SDA由低变高。程序可按下面步骤来写,用写端口函数向378H写入“0XFC”,使SCL和SDA为低电平,延时一段时间,向378H写入“0XFD”,使SCL变为高电平,SDA为低电平,延时,向378H写入“0XFF”SCL保持不变,使SDA由原来的低电平变为高电平,即产生了一个停止信号。延时一段时间,最后向378H写入“0XFE”,使SCL为低电平,以完成一个时钟。
发送数据:先把要发送的数据放在一个变量里,然后按位发送。方法为,通过位运算求得欲发送位的值(1或0),然后用写端口函数模拟出SCL和SDA,并按I2C的写时序将一位数据发送出去,程序中可用while循环语句来控制发送的位数和字节数。
主机(并口)发送应答:I2C总线,主机发送应答用在连续读时序中,每读取一字节(8位)后,主机使SDA保持一个时钟周期的低电平。可以用写端口函数先将SDA、SCL置为 0,然后将SCL变高,SDA保持低电平,一个应答信号既被发送,最后将SCL置低,完成一个时钟。
接收数据:并口读取I2C总线的数据时,必须让 T1截止,使用并口的13脚来接收SDA上的数据。可按下面步骤操作,先用写端口函数使SCL为低电平,同时在并口3脚输出高电平使 T1 截止。然后用写端口函数单独将SCL置1,其它位保持不变,模拟出时钟上升沿,IC1 将把一位数据放到数据线SDA上,用读端口函数 inprotb() 读取‘打印机状态’寄存器379H当前的值,将结果赋值给一个变量,然后对这个变量进行先右移4位,再左移7位的运算(用以获得13 脚电平状态,即打印机状态寄存器的位 4 的值),判断该变量是否为0,最后将判断结果移入另外的一个用于存放‘已读取数据’的变量中,完成读取一位数据的操作,用写端口函数使SCL为低电平,在下一个SCL的上升沿,同样用上面的方法将一位数据加入‘已读取数据’变量中。可用while循环控制要读的位数和字节数。注意:以上过程都是在 T1 为截止态时进行的。
主机(并口)接收应答:接收应答用于写 I2C 时,每写一字节数据到从机后,如果操作成功,从机在下一个时钟内使 SDA 为低。主机查询应答可以加强操作的可靠性。接收应答和上面说的接收数据大致相同,只是仅接收一位数据并且不存储,直接判断其值是否为 0,不为 0 时(即没有收到应答)转错误处理程序,为 0则继续后面的操作。在实际编程时将这个步骤合并到写I2C的操作中。
有关延时:I2C器件对SDA和SCL上的高、低电平信号需保持的时间是有规定的。如:开始信号的高、低电平要保持多长时间,数据信号的高、低电平最低要保持多长时间等。不同的器件对这个时间有不同的规定。查找24LO02的数据手册,可以知道,它在不同的电压下对各信号要保持的时间分别在几百纳秒到几微秒之间。这个时间也体现了I2C器件的读写速度。因为计算机的速度不同,要用计算机并口来模拟I2C很难将这个时间精确到微秒。为了能够在不同的计算机上可靠的操作I2C总线,试验程序用了C语言的延时函数delay();这个函数能产生的最小延时为1毫秒。虽然这样做降低了I2C的读写速度,但可以保证操作的可靠性。
四、用并口读写I2C总线的源程序:程序中把I2C的一些操作时序定义成了独立的函数供主函数调用,这样增加了程序的灵活性,也方便对程序的修改和扩充。 |