- UID
- 1029342
- 性别
- 男
|
2.2示波器进行的实时抖动测试方法不失为实用可靠之方法。
针对高速串行总线抖动可用示波器进行的实时抖动测试方法并探讨影响抖动测试结果的关键因素。
2.21典型的抖动测试方法
*在了解抖动测试前,明智选择合适的抖动测试工具和方法成为整个抖动测试工作的首先。
为成功地设计高速数字系统,不仅需要理解什么是抖动,计算抖动的大小,还需要对不同的抖动分量进行隔离和分解,分析造成抖动的原因,进而避免在高速系统中出现抖动造成的系统故障。在了解抖动测试前,首先必须选择合适的抖动测试工具和方法。
2.22高性能数字示波器配备高速采集内存成为最流行的抖动测试工具。
这是因为目前有几种抖动测试工具可供选择,误码仪(BERT)直接测试系统的误码率,但是价位昂贵,功能单一,并不适合设计人员和调试人员;采用时间间隔分析仪测试抖动也存在功能单一,抖动分析能力不足的限制。
对于数字示波器而言,典型的抖动测试方法主要有2种:
*即采用数字存储示波器的等效采样模式或直接使用采样示波器,通过直方图统计测量累计定时抖动.等效采样的缺点是无法消除示波器自身的触发抖动对测试结果的影响,并且由于它采用的是多次触发,多次采集,累计显示的工作方式,对于电路设计和调试而言受到较多的限制,无法进行深层的抖动分析。另一个限制是该方法抖动测试参数有限,例如不能测试周期间抖动。
*更为流行的方法是采用数字存储示波器的实时捕获模式,单次.分析和抖动分解得到每一个抖动分量,帮助设计和测试人员分析抖动产生的原因,甚至通过抖动分解估算系统的误码率。例如,在有关抖动和信号完整性方法论用泰克实时示波器配合TDSJIT3抖动分析软件进行抖动测试和分析。图5是TDSJIT3实时抖动测试结果。
2.3抖动测试
抖动可以描述为相邻脉:中边沿、甚至非相邻脉;中边沿周期或相位的定时变化。这些指标适合检定长期和短期的时钟和数据稳定性。通过更加深入地分析抖动指标,利用抖动测试结果,预测复杂系统的数据传输性能。
周期抖动用来衡量时钟或数据周期样点的边沿到边沿定时。例如,通过测量1000个时钟周期上升沿之间的时间,可以对统计的周期取样,统计数据会告诉您信号的质量。标准偏差等价于日MS周期抖动,最大周期减去最小周期,得到峰到峰周期抖动。每个不同周期测量的精度决定着抖动测量的精度。
相位抖动用来衡量被测信号边沿相对于一个参考信号边沿的时间偏差,从而可以检测到信号相位中的任何变化。这一指标在许多方面不同于周期测量指标。第一,它单独使用每个边沿,而没有使用“period”周期测量,它可以测量大的时间位移。边沿相位可以偏离几百或几千度,但仍可以以非常高的精度进行测量 (360度等于一个周期或循环时间)。测量相位误差常用的指标是时间间隔误差(TIE),测量结果用相对于度的秒来表示。TIE把信号边沿与参考边沿匹配起来,对各边沿之差相加计算总和。在比较了大量的边沿之后,可以为分析提供一个样点集合。与上面的周期测量一样,标准偏差变成日MST TIE,最大时间减最小时间得到峰到峰值(peak-to-peak)TIE等等。TIE测试精度取决于构成样点集合的各个测量的精度。图6显示的是对一个时钟信号的不同抖动测试参数。
2.4测试精度
任何设计人员选择示波器进行参数测量前都会通过产品的指标了解其测试精度,以保证足够的容许误差和测量余量,抖动测试也不例外。抖动测试精度受到许多因素的影响,主要包括示波器的定时稳定度、取样噪声、仪器幅度本底噪声和内插误差。
内插误差是由在实际电压样点之间进行线性内插导致的误差。在测量100ps上升时间的信号、示波器以20GSa/s采样率在50%电压门限上进行检测时,这一误差要小于0.3ps RMS。在许多情况下这一误差可以使用示波器中的Sin(X)/X正弦内插及其它方法改善,例如充分利用示波器的垂直动态范围,使输入信号幅度达到示波器满刻度。在大多数情况下,这一原因导致的误差会远小于其它误差源,并且通过使用如Sin(X)/X内插,可以进一步减小这一误差。
示波器采样系统中定时元件的稳定性直接影响着定时测量精度。如果时基有误差,那么基于该时基进行的测量会具有同等或更大的误差。示波器中的时基稳定性包括参考时钟、倍频器、计数器等相关电路的稳定性。
3、结束语
上述针对当前DVD与高速串行总线二种不同领域的抖动测试技术与和方法及测试实例作重点介绍。这仅是基本理念,具体如何测量与分析要根据不同的应用场合与精度来选定与运作。 |
|