首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于FPGA的简易频谱分析仪的设计方案

基于FPGA的简易频谱分析仪的设计方案

1 引言  目前,由于频谱分析仪价格昂贵,高等院校只是少数实验室配有频谱仪。但电子信息类教学,如果没有频谱仪辅助观察,学生只能从书本中抽象理解信号特征,严重影响教学实验效果。
  针对这种现状提出一种基于FPGA的简易频谱分析仪设计方案,其优点是成本低,性能指标满足教学实验所要求的检测信号范围。
  2 设计方案
  图1为系统设计总体框图。该系统采用C8051系列单片机中的 C8051F121作为控制器,CvcloneⅢ系列EP3C40F484C8型FPGA为数字信号算法处理单元。系统设计遵循抽样定理,在时域内截取一段适当长度信号,对其信号抽样量化,按照具体的步骤求取信号的频谱,并在LCD上显示信号的频谱,同时提供友好的人机会话功能。该系统最小分辨率为1 Hz,可分析带宽为0~5 MHz的各种信号。

  由于单片机C8051 F121内部集成A/D转换器,能够有效测量自动增益控制AGC压差,计算出对输入信号的放大倍数;另外,该单片机内置高速控制内核和丰富的存储器,使其能够控制整个系统;EP3C40F484C8型FPGA内置丰富的存储器资源,确保该系统具有足够的空间存储采集的点数,完成离散傅里叶变换、数字滤波器、数字混频等信号处理。
  3 理论分析
  3.1 数字下变频FFT
  随着高速A/D转换和DSP技术的发展,数字下变频的快速傅里叶变换FFT(Fast Fourier Transform)技术能够有效减少传统FFT技术存在的内存不足。在高中频、高采样率系统中实现信号频谱的高分辨率、低存储量和低运算量,从而极大提高系统的实时性。
  图2为基于数字下变频的FFT技术的实现原理框图。

  3.2 直接数字频率合成器DDS原理
  用直接数字频率合成器DDS(Direct Digital Synthesiz-er)原理实现扫频信号的信号源主要由参考频率源、相位累加器、正弦波采样点存储RAM、数模转换器及低通滤波器构成。设参考频率源频率为fclk,计数容量为2N的相位累加器(N为相位累加器的位数),若频率控制字为M,则DDS系统输出信号的频率为fout=fclk/2N×M,而频率分辨率为△f=fclk/2N。为达到输出频率范围为5 MHz的要求,考虑到实际低通滤波器性能的限制,fclk为200 MHz,相位累加器的位数为32位。其中高10位用做ROM地址读波表(1个正弦波周期采样1 024个点),频率控制字也为32位,这样理论输出频率满足要求。
  4 系统硬件设计
  4.1 AGC电路
  输入信号经高速A/D采样,信号幅度必须满足A/D的采样范围,最高为2-3V,因此该系统设计应加AGC电路。AGC电路采用AD603型线性增益放大器。图3为AGC电路。

  4.2 A/D转换电路
  ADS2806是一款12位A/D转换器,其特点为:无杂散信号动态范围(SFDR)为73 dB;信噪比(SNR)为66 dB;具有内部和外部参考时钟;采样速率为32 MS/s。图4为ADS2806的电路。为使A/D转换更稳定,在A/D转换器的电源引脚上增加滤波电容,抑制电源噪声。该电路结构简单,在时钟CLK的驱动下,数据端口实时输出数据,供FPGA读取。
返回列表