从代码层读懂Java HashMap的实现原理(4)
- UID
- 1029342
- 性别
- 男
|
从代码层读懂Java HashMap的实现原理(4)
// 清空HashMap,将所有的元素设为null public void clear() { modCount++; Entry[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } // 是否包含“值为value”的元素 public boolean containsValue(Object value) { // 若“value为null”,则调用containsNullValue()查找 if (value == null) return containsNullValue(); // 若“value不为null”,则查找HashMap中是否有值为value的节点。 Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } // 是否包含null值 private boolean containsNullValue() { Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } // 克隆一个HashMap,并返回Object对象 public Object clone() { HashMap<K,V> result = null; try { result = (HashMap<K,V>)super.clone(); } catch (CloneNotSupportedException e) { // assert false; } result.table = new Entry[table.length]; result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); // 调用putAllForCreate()将全部元素添加到HashMap中 result.putAllForCreate(this); return result; } // Entry是单向链表。 // 它是 “HashMap链式存储法”对应的链表。 // 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数 static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; // 指向下一个节点 Entry<K,V> next; final int hash; // 构造函数。 // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)" Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 判断两个Entry是否相等 // 若两个Entry的“key”和“value”都相等,则返回true。 // 否则,返回false public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } // 实现hashCode() public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } // 当向HashMap中添加元素时,绘调用recordAccess()。 // 这里不做任何处理 void recordAccess(HashMap<K,V> m) { } // 当从HashMap中删除元素时,绘调用recordRemoval()。 // 这里不做任何处理 void recordRemoval(HashMap<K,V> m) { } } // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。 void addEntry(int hash, K key, V value, int bucketIndex) { // 保存“bucketIndex”位置的值到“e”中 Entry<K,V> e = table[bucketIndex]; // 设置“bucketIndex”位置的元素为“新Entry”, // 设置“e”为“新Entry的下一个节点” table[bucketIndex] = new Entry<K,V>(hash, key, value, e); // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小 if (size++ >= threshold) resize(2 * table.length); } // 创建Entry。将“key-value”插入指定位置,bucketIndex是位置索引。 // 它和addEntry的区别是: // (01) addEntry()一般用在 新增Entry可能导致“HashMap的实际容量”超过“阈值”的情况下。 // 例如,我们新建一个HashMap,然后不断通过put()向HashMap中添加元素; // put()是通过addEntry()新增Entry的。 // 在这种情况下,我们不知道何时“HashMap的实际容量”会超过“阈值”; // 因此,需要调用addEntry() // (02) createEntry() 一般用在 新增Entry不会导致“HashMap的实际容量”超过“阈值”的情况下。 // 例如,我们调用HashMap“带有Map”的构造函数,它绘将Map的全部元素添加到HashMap中; // 但在添加之前,我们已经计算好“HashMap的容量和阈值”。也就是,可以确定“即使将Map中 // 的全部元素添加到HashMap中,都不会超过HashMap的阈值”。 // 此时,调用createEntry()即可。 void createEntry(int hash, K key, V value, int bucketIndex) { // 保存“bucketIndex”位置的值到“e”中 Entry<K,V> e = table[bucketIndex]; // 设置“bucketIndex”位置的元素为“新Entry”, // 设置“e”为“新Entry的下一个节点” table[bucketIndex] = new Entry<K,V>(hash, key, value, e); size++; } // HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。 // 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。 private abstract class HashIterator<E> implements Iterator<E> { // 下一个元素 Entry<K,V> next; // expectedModCount用于实现fast-fail机制。 int expectedModCount; // 当前索引 int index; // 当前元素 Entry<K,V> current; HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; // 将next指向table中第一个不为null的元素。 // 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。 while (index < t.length && (next = t[index++]) == null) } } public final boolean hasNext() { return next != null; } // 获取下一个元素 final Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K,V> e = next; if (e == null) throw new NoSuchElementException(); // 注意!!! // 一个Entry就是一个单向链表 // 若该Entry的下一个节点不为空,就将next指向下一个节点; // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。 if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) } current = e; return e; } // 删除当前元素 public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } // value的迭代器 private final class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } // key的迭代器 private final class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } // Entry的迭代器 private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // 返回一个“key迭代器” Iterator<K> newKeyIterator() { return new KeyIterator(); } // 返回一个“value迭代器” Iterator<V> newValueIterator() { return new ValueIterator(); } // 返回一个“entry迭代器” Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } // HashMap的Entry对应的集合 private transient Set<Map.Entry<K,V>> entrySet = null; // 返回“key的集合”,实际上返回一个“KeySet对象” public Set<K> keySet() { Set<K> ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } |
|
|
|
|
|