随着IC器件集成度的提高、设备的逐步小型化和器件的速度愈来愈高,电子产品中的EMI问题也更加严重。从系统设备EMC/EMI设计的观点来看,在设备的PCB设计阶段处理好EMC/EMI问题,是使系统设备达到电磁兼容标准最有效、成本最低的手段。本文介绍数字电路PCB 一、EMI的产生及抑制原理
EMI的产生是由于电磁干扰源通过耦合路径将能量传递给敏感系统造成的。它包括经由导线或公共地线的传导、通过空间辐射或通过近场耦合三种基本形式。EMI的危害表现为降低传输信号质量,对电路或设备造成干扰甚至破坏,使设备不能满足电磁兼容标准所规定的技术指标要求。
为抑制EMI,数字电路的EMI设计应按下列原则进行:
●根据相关EMC/EMI技术规范,将指标分解到单板电路,分级控制。
●从EMI的三要素即干扰源、能量耦合途径和敏感系统这三个方面来控制,使电路有平坦的频响,保证电路正常、稳定工作。
●从设备前端设计入手,关注EMC/EMI设计,降低设计成本。
二、数字电路PCB的 EMI控制技术
在处理各种形式的EMI时,必须具体问题具体分析。在数字电路的PCB设计中,可以从下列几个方面进行EMI控制。
1.器件选型
在进行EMI设计时,首先要考虑选用器件的速率。任何电路,如果把上升时间为5ns的器件换成上升时间为2.5ns的器件,EMI会提高约4倍。EMI的辐射强度与频率的平方成正比,最高EMI频率(fknee)也称为EMI发射带宽,它是信号上升时间而不是信号频率的函数:fknee =0.35/Tr (其中Tr为器件的信号上升时间)
这种辐射型EMI的频率范围为30MHz到几个GHz,在这个频段上,波长很短,电路板上即使非常短的布线也可能成为发射天线。当EMI较高时,电路容易丧失正常的功能。因此,在器件选型上,在保证电路性能要求的前提下,应尽量使用低速芯片,采用合适的驱动/接收电路。另外,由于器件的引线管脚都具有寄生电感和寄生电容,因此在高速设计中,器件封装形式对信号的影响也是不可忽视的,因为它也是产生EMI辐射的重要因素。一般地,贴片器件的寄生参数小于插装器件,BGA封装的寄生参数小于QFP封装。
2.连接器的选择与信号端子定义
连接器是高速信号传输的关键环节,也是易产生EMI的薄弱环节。在连接器的端子设计上可多安排地针,减小信号与地的间距,减小连接器中产生辐射的有效信号环路面积,提供低阻抗回流通路。必要时,要考虑将一些关键信号用地针隔离。
3.叠层设计
在成本许可的前提下,增加地线层数量,将信号层紧邻地平面层可以减少EMI辐射。对于高速PCB,电源层和地线层紧邻耦合,可降低电源阻抗,从而降低EMI。
4.布局
根据信号电流流向,进行合理的布局,可减小信号间的干扰。合理布局是控制EMI的关键。布局的基本原则是:
●模拟信号易受数字信号的干扰,模拟电路应与数字电路隔开;
●时钟线是主要的干扰和辐射源,要远离敏感电路,并使时钟走线最短;
●大电流、大功耗电路尽量避免布置在板中心区域,同时应考虑散热和辐射的影响;
●连接器尽量安排在板的一边,并远离高频电路;
●输入/输出电路靠近相应连接器,去耦电容靠近相应电源管脚;
●充分考虑布局对电源分割的可行性,多电源器件要跨在电源分割区域边界布放,以有效降低平面分割对EMI的影响;
●回流平面(路径)不分割。
5.布线
●阻抗控制:高速信号线会呈现传输线的特性,需要进行阻抗控制,以避免信号的反射、过冲和振铃,降低EMI辐射。
●将信号进行分类,按照不同信号(模拟信号、时钟信号、I/O信号、总线、电源等)的EMI辐射强度及敏感程度,使干扰源与敏感系统尽可能分离,减小耦合。
●严格控制时钟信号(特别是高速时钟信号)的走线长度、过孔数、跨分割区、端接、布线层、回流路径等。
●信号环路,即信号流出至信号流入形成的回路,是PCB设计中EMI控制的关键,在布线时必须加以控制。要了解每一关键信号的流向,对于关键信号要靠近回流路径布线,确保其环路面积最小。
对低频信号,要使电流流经电阻最小的路径;对高频信号,要使高频电流流经电感最小的路径,而非电阻最小的路径(见图1)。对于差模辐射,EMI辐射强度(E)正比于电流、电流环路的面积以及频率的平方。(其中I是电流、A是环路面积、f是频率、r是到环路中心的距离,k为常数。)
因此当最小电感回流路径恰好在信号导线下面时,可以减小电流环路面积,从而减少EMI辐射能量。
●关键信号不得跨越分割区域。
●高速差分信号走线尽可能采用紧耦合方式。
●确保带状线、微带线及其参考平面符合要求。
●去耦电容的引出线应短而宽。
●所有信号走线应尽量远离板边缘。
●对于多点连接网络,选择合适的拓扑结构,以减小信 号反射,降低EMI辐射。
6.电源平面的分割处理
设计中的EMI控制技术。 |