Linux 自检和 SystemTap(2)框架与脚本编写
- UID
- 1066743
|
Linux 自检和 SystemTap(2)框架与脚本编写
SystemTap 的架构让我们深入探索 SystemTap 的某些细节,理解它如何在运行的内核中提供动态探针。您还将看到 SystemTap 是如何工作的,从构建进程脚本到在运行的内核中激活脚本。
动态地检查内核SystemTap 用于检查运行的内核的两种方法是 Kprobes 和 返回探针。但是理解任何内核的最关键要素是内核的映射,它提供符号信息(比如函数、变量以及它们的地址)。有了内核映射之后,就可以解决任何符号的地址,以及更改探针的行为。
Kprobes 从 2.6.9 版本开始就添加到主流的 Linux 内核中,并且为探测内核提供一般性服务。它提供一些不同的服务,但最重要的两种服务是 Kprobe 和 Kretprobe。Kprobe 特定于架构,它在需要检查的指令的第一个字节中插入一个断点指令。当调用该指令时,将执行针对探针的特定处理函数。执行完成之后,接着执行原始的指令(从断点开始)。
Kretprobes 有所不同,它操作调用函数的返回结果。注意,因为一个函数可能有多个返回点,所以听起来事情有些复杂。不过,它实际使用一种称为 trampoline 的简单技术。您将向函数条目添加一小段代码,而不是检查函数中的每个返回点。这段代码使用 trampoline 地址替换堆栈上的返回地址 —— Kretprobe 地址。当该函数存在时,它没有返回到调用方,而是调用 Kretprobe(执行它的功能),然后从 Kretprobe 返回到实际的调用方。
SystemTap 的流程图 1 展示了 SystemTap 的基本流程,涉及到 3 个交互实用程序和 5 个阶段。该流程首先从 SystemTap 脚本开始。您使用 stap 实用程序将 stap 脚本转换成提供探针行为的内核模块。stap 流程从将脚本转换成解析树开始 (pass 1)。然后使用细化(elaboration)步骤 (pass 2) 中关于当前运行的内核的符号信息解析符号。接下来,转换流程将解析树转换成 C 源代码 (pass 3) 并使用解析后的信息和 tapset 脚本(SystemTap 定义的库,包含有用的功能)。stap 的最后步骤是构造使用本地内核模块构建进程的内核模块 (pass 4)。
图 1. SystemTap 流程有了可用的内核模块之后,stap 完成了自己的任务,并将控制权交给其他两个实用程序 SystemTap:staprun 和 stapio。这两个实用程序协调工作,负责将模块安装到内核中并将输出发送到 stdout (pass 5)。如果在 shell 中按组合键 Ctrl-C 或脚本退出,将执行清除进程,这将导致卸载模块并退出所有相关的实用程序。
SystemTap 的一个有趣特性是缓存脚本转换的能力。如果安装后的脚本没有更改,您可以使用现有的模块,而不是重新构建模块。图 2 显示了 user-space 和 kernel-space 元素以及基于 stap 的转换流程。
图 2. 从 kernel/user-space 角度了解 SystemTap 流程SystemTap 脚本编写在 SystemTap 中编写脚本非常简单,但也很灵活,有许多您需要使用的选项。 提供一个详述语言和可行性的手册的链接,但这个小节仅讨论一些例子,让您初步了解 SystemTap 脚本。
探针SystemTap 脚本由探针和在触发探针时需要执行的代码块组成。探针有许多预定义模式,表 1 列出了其中的一部分。这个表列举了几种探针类型,包括调用内核函数和从内核函数返回。
表 1. 探针模式例子探针类型说明begin在脚本开始时触发end在脚本结束时触发kernel.function("sys_sync")调用 sys_sync 时触发kernel.function("sys_sync").call同上kernel.function("sys_sync").return返回 sys_sync 时触发kernel.syscall.*进行任何系统调用时触发kernel.function("*@kernel/fork.c:934")到达 fork.c 的第 934 行时触发module("ext3").function("ext3_file_write")调用 ext3 write 函数时触发timer.jiffies(1000)每隔 1000 个内核 jiffy 触发一次timer.ms(200).randomize(50)每隔 200 毫秒触发一次,带有线性分布的随机附加时间(-50 到 +50)
我们通过一个简单的例子来理解如何构造探针,并将代码与该探针相关联。清单 3 显示了一个样例探针,它在调用内核系统调用 sys_sync 时触发。当该探针触发时,您希望计算调用的次数,并发送这个计数以及表示调用进程 ID(PID)的信息。首先,声明一个任何探针都可以使用的全局值(全局名称空间对所有探针都是通用的),然后将它初始化为 0。其次,定义您的探针,它是一个探测内核函数 sys_sync 的条目。与探针相关联的脚本将递增 count 变量,然后发出一条消息,该消息定义调用的次数和当前调用的 PID。注意,这个例子与 C 语言中的探针非常相似(探针定义语法除外),如果具有 C 语言背景将非常有帮助。
清单 3. 一个简单的探针和脚本1
2
3
4
5
6
| global count=0
probe kernel.function("sys_sync") {
count++
printf( "sys_sync called %d times, currently by pid %d\n", count, pid );
}
|
您还可以声明探针可以调用的函数,尤其是希望供多个探针调用的通用函数。这个工具还支持递归到给定深度。
变量和类型SystemTap 允许定义多种类型的变量,但类型是从上下文推断得出的,因此不需要使用类型声明。在 SystemTap 中,您可以找到数字(64 位签名的整数)、整数(64 位)、字符串和字面量(字符串或整数)。您还可以使用关联数组和统计数据(我们稍后讨论)。
表达式SystemTap 提供 C 语言中常用的所有必要操作符,并且用法也是一样的。您还可以找到算术操作符、二进制操作符、赋值操作符和指针废弃。您还看到从 C 语言带来的简化,其中包括字符串连接、关联数组元素和合并操作符。
语言元素在探针内部,SystemTap 提供一组类似于 C 一样易于使用的语句。注意,尽管该语言允许您开发复杂的脚本,但每个探针只能执行 1000 条语句(这个数量是可配置的)。表 2 列出了一小部分语句作为例子。注意,在这里的许多元素和 C 中的一样,尽管有一些附加的东西是特定于 SystemTap 的。
表 2. SystemTap 的语言元素语句说明if (exp) {} else {}标准的 if-then-else 语句for (exp1 ; exp2 ; exp3 ) {}一个 for 循环while (exp) {}标准的 while 循环do {} while (exp)一个 do-while 循环break退出迭代continue继续迭代next从探针返回return从函数返回一个表达式foreach (VAR in ARRAY) {}迭代一个数组,将当前的键分配给 VAR
本文在样例脚本中探索了统计数据和聚合功能,因为这是 C 语言中不存在的。
最后,SystemTap 提供许多内部函数,这些函数提供关于当前上下文的额外信息。例如,您可以使用 caller() 识别当前的调用函数,使用 cpu() 识别当前的处理器号码,以及使用 pid() 返回 PID。SystemTap 还提供许多其他函数,提供对调用堆栈和当前注册表的访问。 |
|
|
|
|
|