PCB Layout中的走线误区----认为走直角线不好(1)
- UID
- 85745
- 性别
- 男
|
PCB Layout中的走线误区----认为走直角线不好(1)
1. 直角走线 直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。 直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。
传输线的直角带来的寄生电容可以由下面这个经验公式来计算: C=61W(Er)1/2/Z0 在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量: T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps 通过计算可以看出,直角走线带来的电容效应是极其微小的。
由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。
很多人对直角走线都有这样的理解,认为尖端容易发射或接收电磁波,产生EMI,这也成为许多人认为不能直角走线的理由之一。然而很多实际测试的结果显示,直角走线并不会比直线产生很明显的EMI。也许目前的仪器性能,测试水平制约了测试的精确性,但至少说明了一个问题,直角走线的辐射已经小于仪器本身的测量误差。
总的说来,直角走线并不是想象中的那么可怕。至少在GHz以下的应用中,其产生的任何诸如电容,反射,EMI等效应在TDR测试中几乎体现不出来,高速PCB设计工程师的重点还是应该放在布局,电源/地设计,走线设计,过孔等其他方面。当然,尽管直角走线带来的影响不是很严重,但并不是说我们以后都可以走直角线,注意细节是每个优秀工程师必备的基本素质,而且,随着数字电路的飞速发展,PCB工程师处理的信号频率也会不断提高,到10GHz以上的RF设计领域,这些小小的直角都可能成为高速问题的重点对象。 |
我是主持人,煸情功夫一流。我是工程师,刻苦学习一生。我是海王星,透明蓝色一体。因为有了你,我就一通百通。 |
|
|
|
|
|
- UID
- 108665
- 性别
- 男
|
长见识了.谢谢老大的讲解.希望以后有多点这样的了解和学习.谢谢. |
|
|
|
|
|
- UID
- 143469
- 性别
- 男
|
我觉得斑竹真的是很厉害,对微波的东西都很清楚,斗胆问问是做什么工作的,我想请教你一些专业的东西 |
|
|
|
|
|
- UID
- 145111
- 性别
- 女
|
|
|
|
|
|
- UID
- 136000
- 性别
- 男
|
|
|
|
|
|
- UID
- 142429
- 性别
- 男
|
|
|
|
|
|
- UID
- 129238
- 性别
- 男
|
|
|
|
|
|
- UID
- 166805
- 性别
- 男
|
|
|
|
|
|
- UID
- 168803
- 性别
- 男
|
原来如此。我一直都没有走直角,尽管频率不高(不超过200MHZ)。 那么,请问,走弧线呢?针对于走直角或45度角,它能起多大的作用? |
|
|
|
|
|
- UID
- 85745
- 性别
- 男
|
多数人这么认为,走弧线是所有走线中最漂亮的,就是花是时间比较多一些。 |
我是主持人,煸情功夫一流。我是工程师,刻苦学习一生。我是海王星,透明蓝色一体。因为有了你,我就一通百通。 |
|
|
|
|
|
- UID
- 101016
- 性别
- 男
|
|
|
|
|
|
- UID
- 158822
- 性别
- 男
|
|
|
|
|
|
- UID
- 171254
- 性别
- 男
|
|
|
|
|
|
- UID
- 174679
- 性别
- 女
|
学习了,感慨中…… 你是如何做到如此的进入深的研究的呢? |
|
|
|
|
|